物理競(jìng)賽題高中?1) 設(shè)M向右加速度a,m1和m2相對(duì)M的滑行加速度A,則以M為觀察點(diǎn),m1受向左慣性力m1×a,m2受向左慣性力m2×a,從而:以M為觀察點(diǎn),m1和m2共同滑行加速度A:m1×g×sinα+m1×a×cosα+m2×a×cosβ-m2×g×sinβ=(m1+m2)A,在整體坐標(biāo)系下,那么,物理競(jìng)賽題高中?一起來了解一下吧。
繩上最低點(diǎn)C處的張力T=Mg/2
分析;繩子張力在不考慮本身重力時(shí)處處相等,在考慮自身重力時(shí),須加上受力點(diǎn)下方的重力。由于C點(diǎn)最低,下方重力影響沒有。
解Ⅰ這是一個(gè)比較復(fù)雜的運(yùn)動(dòng),將此運(yùn)動(dòng)看成兩個(gè)運(yùn)動(dòng)的合成:一個(gè)是B滑輪不動(dòng),卷揚(yáng)機(jī)以速度ν0收吊索;另一個(gè)是AB段吊索長(zhǎng)度不變,B滑塊以ν向右運(yùn)動(dòng)。第一個(gè)運(yùn)動(dòng)使A滑塊得到了一個(gè)速度ν1=
第二個(gè)運(yùn)動(dòng)使A滑塊得到另一個(gè)速度
ν2=-cotθ·ν
A的真實(shí)速度
νA=ν1+ν2=
將A的速度分解成沿吊索方向的分量νAⅡ和垂直吊索方向的分量
B速度的垂直于吊索的分量
所以A相對(duì)于B垂直于吊索方向的速度
A物體的向心加速度
分析A的受力情況可知
聯(lián)立,即可求得T
□解Ⅱ 以滑輪B為參照物,A物體速度可看成水平方向的速度ν和豎直方向的速度ν′的合成,卷揚(yáng)機(jī)雖然也有向左的速度ν,但不影響吊索的速度,所以物體A沿吊索方向的速度亦為ν0。即
得
A速度垂直吊索的分量
以下同解Ⅰ
給我郵箱我把答案?jìng)鹘o你 這上面一些符號(hào)圖像都打不出
先問一句,你學(xué)過微積分沒有,至少是一些解微分方程組的技巧。沒有的話我再另想辦法。除了微分方程組外,還有一招是配速度法
1) 設(shè)M向右加速度a,m1和m2相對(duì)M的滑行加速度A,則以M為觀察點(diǎn),m1受向左慣性力m1×a,m2受向左慣性力m2×a,從而:
以M為觀察點(diǎn),m1和m2共同滑行加速度A:m1×g×sinα+m1×a×cosα+m2×a×cosβ-m2×g×sinβ=(m1+m2)A,
在整體坐標(biāo)系下,系統(tǒng)水平加速度為0:m1(A×cosα-a)+m2×(A×cosβ-a)=M×a
代入:m1=4m,m2=m,M=16m,α=π/6,β=π/3,g=10
解得:
A=2.67
a=0.50
2)系統(tǒng)重心位移為0
m1×(L×cosα-d)+m2(L×cosβ-d)=M×d
解得:d=0.03775
解:把N和f的求合力,設(shè)為F1,則F1與N夾角α=arctanμ(tanα=N/f=μ),
這樣就變成三個(gè)力了,重力大小方向均不變、F1方向不變、F大小方向均變化,
把它們畫到一個(gè)矢量三角形內(nèi)部,可知當(dāng)F與F1垂直時(shí)F最小,
此時(shí)Fmin=mgsinα,由于tanα=μ,sinα=μ/√(1+μ^2),
故Fmin=μmg/√(1+μ^2)。
以上就是物理競(jìng)賽題高中的全部?jī)?nèi)容,首先考察圓環(huán)伸縮時(shí)造成的徑向分力 當(dāng)圓環(huán)伸縮至半徑x時(shí),產(chǎn)生的張力為T=2πk(x-a)對(duì)于圓環(huán)上對(duì)應(yīng)dα角的小繩子,兩端T造成合力F=2Tsindα/2約為Tdα 假設(shè)曲線在x處切線為傾斜角為β 為使此段小繩平衡,內(nèi)容來源于互聯(lián)網(wǎng),信息真?zhèn)涡枳孕斜鎰e。如有侵權(quán)請(qǐng)聯(lián)系刪除。