韩国美女久久,久久久国际精品,激情小说亚洲图片,国产精品多人

當(dāng)前位置: 首頁(yè) > 高中 > 高中數(shù)學(xué)

高中數(shù)學(xué)會(huì)考知識(shí)點(diǎn)總結(jié),2023高中數(shù)學(xué)會(huì)考必考知識(shí)

  • 高中數(shù)學(xué)
  • 2023-07-19

高中數(shù)學(xué)會(huì)考知識(shí)點(diǎn)總結(jié)?高中數(shù)學(xué)會(huì)考范圍:《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))》所規(guī)定的必修“數(shù)學(xué)1”至“數(shù)學(xué)5”五個(gè)模塊的內(nèi)容。具體內(nèi)容如下:一、集合與簡(jiǎn)易邏輯 1、含n個(gè)元素的集合的所有子集有 2”個(gè) 2、集合元素的特征:確定性、無(wú)序性、那么,高中數(shù)學(xué)會(huì)考知識(shí)點(diǎn)總結(jié)?一起來了解一下吧。

高中數(shù)學(xué)合格考知識(shí)點(diǎn)總結(jié)

請(qǐng)不要埋怨學(xué)習(xí)的繁重,工作的勞苦,感情的負(fù)擔(dān),因?yàn)檎嬲目鞓罚菉^戰(zhàn)后的結(jié)果,沒有經(jīng)歷深刻的痛苦,我們也就體會(huì)不到酣暢淋漓的快樂!從學(xué)習(xí)中可以體驗(yàn)到很多樂趣的!以下是我給大家整理的高二數(shù)學(xué)會(huì)考知識(shí)點(diǎn),希望能助你一臂之力!

高二數(shù)學(xué)會(huì)考知識(shí)點(diǎn)1

導(dǎo)數(shù)是微積分中的重要基礎(chǔ)概念。當(dāng)函數(shù)y=f(x)的自變量x在一點(diǎn)x0上產(chǎn)生一個(gè)增量Δx時(shí),函數(shù)輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時(shí)的極限a如果存在,a即為在x0處的導(dǎo)數(shù),記作f'(x0)或df(x0)/dx。

導(dǎo)數(shù)是函數(shù)的局部性質(zhì)。一個(gè)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)描述了這個(gè)函數(shù)在這一點(diǎn)附近的變化率。如果函數(shù)的自變量和取值都是實(shí)數(shù)的話,函數(shù)在某一點(diǎn)的導(dǎo)數(shù)就是該函數(shù)所代表的曲線在這一點(diǎn)上的切線斜率。導(dǎo)數(shù)的本質(zhì)是通過極限的概念對(duì)函數(shù)進(jìn)行局部的線性逼近。例如在運(yùn)動(dòng)學(xué)中,物體的位移對(duì)于時(shí)間的導(dǎo)數(shù)就是物體的瞬時(shí)速度。

不是所有的函數(shù)都有導(dǎo)數(shù),一個(gè)函數(shù)也不一定在所有的點(diǎn)上都有導(dǎo)數(shù)。若某函數(shù)在某一點(diǎn)導(dǎo)數(shù)存在,則稱其在這一點(diǎn)可導(dǎo),否則稱為不可導(dǎo)。然而,可導(dǎo)的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導(dǎo)。

對(duì)于可導(dǎo)的函數(shù)f(x),x?f'(x)也是一個(gè)函數(shù),稱作f(x)的導(dǎo)函數(shù)。

會(huì)考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2023

想在學(xué)習(xí)中獲得成功,也不是不是不可能的,只要我們能做到有永不言敗+勤奮學(xué)習(xí)+有遠(yuǎn)大的理想+堅(jiān)定的信念,堅(jiān)強(qiáng)的意志,明確地目標(biāo),而想成功也是應(yīng)該有這個(gè)配方研制而成的吧!以下是我給大家整理的高二數(shù)學(xué)會(huì)考考試必考知識(shí)點(diǎn),希望能幫助到你!

高二數(shù)學(xué)會(huì)考考試必考知識(shí)點(diǎn)1

等腰直角三角形面積公式:S=a2/2,S=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)。

若假設(shè)等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:S=ab/2。

且由等腰直角三角形性質(zhì)可知:底邊c上的高h(yuǎn)=c/2,則三角面積可表示為:S=ch/2=c2/4。

等腰直角三角形是一種特殊的三角形,具有所有三角形的性質(zhì):穩(wěn)定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線角平分線垂線三線合一。

高二數(shù)學(xué)會(huì)考考試必考知識(shí)點(diǎn)2

反函數(shù):

(1)定義:

(2)函數(shù)存在反函數(shù)的條件:

(3)互為反函數(shù)的定義域與值域的關(guān)系:

(4)求反函數(shù)的步驟:

①將看成關(guān)于的方程,解出,若有兩解,要注意解的選擇;

②將互換,得;

③寫出反函數(shù)的定義域(即的值域)。

(5)互為反函數(shù)的圖象間的關(guān)系:

(6)原函數(shù)與反函數(shù)具有相同的單調(diào)性;

(7)原函數(shù)為奇函數(shù),則其反函數(shù)仍為奇函數(shù);原函數(shù)為偶函數(shù),它一定不存在反函數(shù)。

高中數(shù)學(xué)會(huì)考知識(shí)點(diǎn)總結(jié)2023

內(nèi)容如下:

1、集合的元素具有確定性、無(wú)序性和互異性。

2、對(duì)集合,時(shí),必須注意到“極端”情況:或;求集合的子集時(shí)是否注意到是任何集合的子集、是任何非空集合的真子集。

3、判斷命題的真假關(guān)鍵是“抓住關(guān)聯(lián)字詞”;注意:“不‘或’即‘且’,不‘且’即‘或’”。

4、“或命題”的真假特點(diǎn)是“一真即真,要假全假”;“且命題”的真假特點(diǎn)是“一假即假,要真全真”;“非命題”的真假特點(diǎn)是“一真一假”。

5、四種命題中“‘逆’者‘交換’也”、“‘否’者‘否定’也”、原命題等價(jià)于逆否命題,但原命題與逆命題、否命題都不等價(jià)、反證法分為三步:假設(shè)、推矛、得果、充要條件。

高中數(shù)學(xué)會(huì)考知識(shí)點(diǎn)歸納

知識(shí)掌握的巔峰,應(yīng)該在一輪復(fù)習(xí)之后,也就是在你把所有知識(shí)重新?lián)炱饋碇蟆_@樣看來,應(yīng)對(duì)高二這一變化的較優(yōu)選擇,是在高二還在學(xué)習(xí)新知識(shí)時(shí),有意識(shí)地把高一內(nèi)容從頭撿起,自己規(guī)劃進(jìn)度,提前復(fù)習(xí)。下面是我給大家?guī)淼母叨?shù)學(xué)會(huì)考知識(shí)點(diǎn)大全,以供大家參考!

高二數(shù)學(xué)會(huì)考知識(shí)點(diǎn)大全

一、直線與圓:

1、直線的傾斜角 的范圍是

在平面直角坐標(biāo)系中,對(duì)于一條與 軸相交的直線 ,如果把 軸繞著交點(diǎn)按逆時(shí)針方向轉(zhuǎn)到和直線 重合時(shí)所轉(zhuǎn)的最小正角記為, 就叫做直線的傾斜角。當(dāng)直線 與 軸重合或平行時(shí),規(guī)定傾斜角為0;

2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.

過兩點(diǎn)(_1,y1),(_2,y2)的直線的斜率k=( y2-y1)/(_2-_1),另外切線的斜率用求導(dǎo)的方法。

3、直線方程:⑴點(diǎn)斜式:直線過點(diǎn) 斜率為 ,則直線方程為 ,

⑵斜截式:直線在 軸上的截距為 和斜率,則直線方程為

4、 , ,① ‖ , ; ② .

直線 與直線 的位置關(guān)系:

(1)平行 A1/A2=B1/B2 注意檢驗(yàn)(2)垂直 A1A2+B1B2=0

5、點(diǎn) 到直線 的距離公式 ;

兩條平行線 與 的距離是

6、圓的標(biāo)準(zhǔn)方程: .⑵圓的一般方程:

注意能將標(biāo)準(zhǔn)方程化為一般方程

7、過圓外一點(diǎn)作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.

8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長(zhǎng)問題.① 相離 ② 相切 ③ 相交

9、解決直線與圓的關(guān)系問題時(shí),要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長(zhǎng)、弦心距構(gòu)成直角三角形) 直線與圓相交所得弦長(zhǎng)

二、圓錐曲線方程:

1、橢圓: ①方程 (a>b>0)注意還有一個(gè);②定義: PF1+PF2=2a>2c; ③ e= ④長(zhǎng)軸長(zhǎng)為2a,短軸長(zhǎng)為2b,焦距為2c; a2=b2+c2 ;

2、雙曲線:①方程 (a,b>0) 注意還有一個(gè);②定義: PF1-PF2=2a<2c; ③e= ;④實(shí)軸長(zhǎng)為2a,虛軸長(zhǎng)為2b,焦距為2c;漸進(jìn)線 或 c2=a2+b2

3、拋物線 :①方程y2=2p_注意還有三個(gè),能區(qū)別開口方向; ②定義:PF=d焦點(diǎn)F( ,0),準(zhǔn)線_=- ;③焦半徑 ; 焦點(diǎn)弦=_1+_2+p;

4、直線被圓錐曲線截得的弦長(zhǎng)公式:

5、注意解析幾何與向量結(jié)合問題:1、 , . (1) ;(2) .

2、數(shù)量積的定義:已知兩個(gè)非零向量a和b,它們的夾角為θ,則數(shù)量abcosθ叫做a與b的數(shù)量積,記作a·b,即

3、模的計(jì)算:a= . 算模可以先算向量的平方

4、向量的運(yùn)算過程中完全平方公式等照樣適用:

三、直線、平面、簡(jiǎn)單幾何體:

1、學(xué)會(huì)三視圖的分析:

2、斜二測(cè)畫法應(yīng)注意的地方:

(1)在已知圖形中取互相垂直的軸O_、Oy。

高中數(shù)學(xué)學(xué)業(yè)水平考試知識(shí)點(diǎn)

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑

余弦定理 b^2=a^2+c^2-2accosB 注:角B是邊a和邊c的夾角

圓的標(biāo)準(zhǔn)方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圓心坐標(biāo) 

圓的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0

拋物線標(biāo)準(zhǔn)方程 y^2=2px y^2=-2px x^2=2py x^2=-2py

直棱柱側(cè)面積 S=c*h 斜棱柱側(cè)面積 S=c'*h

正棱錐側(cè)面積 S=1/2c*h' 正棱臺(tái)側(cè)面積 S=1/2(c+c')h'

圓臺(tái)側(cè)面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2

圓柱側(cè)面積 S=c*h=2pi*h 圓錐側(cè)面積 S=1/2*c*l=pi*r*l

弧長(zhǎng)公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r

錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h 

斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側(cè)棱長(zhǎng)

柱體體積公式 V=s*h 圓柱體 V=pi*r2h

倍角公式

tan2A=2tanA/[1-(tanA)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) 

和差化積

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B) )

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

某些數(shù)列前n項(xiàng)和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

1+3+5+7+9+11+13+15+…+(2n-1)=n2 

2+4+6+8+10+12+14+…+(2n)=n(n+1) 5

1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4

1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

常用導(dǎo)數(shù)公式

1.y=c(c為常數(shù)) y'=0

2.y=x^n y'=nx^(n-1)

3.y=a^x y'=a^xlna

y=e^x y'=e^x

4.y=logax y'=logae/x

y=lnx y'=1/x

5.y=sinx y'=cosx

6.y=cosx y'=-sinx

7.y=tanx y'=1/cos^2x

8.y=cotx y'=-1/sin^2x

9.y=arcsinx y'=1/√1-x^2

10.y=arccosx y'=-1/√1-x^2

11.y=arctanx y'=1/1+x^2

12.y=arccotx y'=-1/1+x^2

希望能幫到你, 祝你學(xué)習(xí)進(jìn)步,不理解請(qǐng)追問,理解請(qǐng)及時(shí)采納!(*^__^*)

以上就是高中數(shù)學(xué)會(huì)考知識(shí)點(diǎn)總結(jié)的全部?jī)?nèi)容,高二數(shù)學(xué)會(huì)考考試必考知識(shí)點(diǎn)1 等腰直角三角形面積公式:S=a2/2,S=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)。若假設(shè)等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:S=ab/2。

猜你喜歡

  • 青島高中期末考試時(shí)間,2023暑假期末考試時(shí)間表
  • 三牧高考,福州三牧高考復(fù)讀學(xué)校好不好
  • 包四中2017高考,襄陽(yáng)四中2017高考光榮榜
  • 舒城中學(xué)高考成績(jī),舒城一中高考錄取率
主站蜘蛛池模板: 化隆| 太和县| 五常市| 陆河县| 漠河县| 烟台市| 梅河口市| 黄龙县| 山阳县| 静安区| 雷波县| 永济市| 福海县| 西华县| 蓬安县| 鸡东县| 兴国县| 炉霍县| 洛阳市| 昭觉县| 五莲县| 安溪县| 垫江县| 东至县| 新营市| 南部县| 浑源县| 手机| 伊春市| 榆林市| 商水县| 惠东县| 赫章县| 宜兰市| 平舆县| 瑞昌市| 永清县| 岗巴县| 巴彦淖尔市| 台南县| 新沂市|