數學高一知識點?(1)所有的冪函數在(0,+∞)都有定義并且圖象都過點(1,1);三、平面向量 已知兩個從同一點O出發的兩個向量OA、OB,以OA、OB為鄰邊作平行四邊形OACB,則以O為起點的對角線OC就是向量OA、OB的和,那么,數學高一知識點?一起來了解一下吧。
很多同學在復習高一數學時,因為沒有做過的總結,導致復習的效率不高。下面是由我為大家整理的“高一數學知識點總結大全(非常全面)”,僅供參考,歡迎大家閱讀本文。
高一數學知識點匯總1
函數的有宏梁關概念
1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.
注意叢遲:
1.定義域:能使函數式有意義的實數x的集合稱為函數的定義域。
求函數的定義域時列不等式組的主要依據是:
(1)分式的分母不等于零;
(2)偶次方根的被開方數不小于零;
(3)對數式的真數必須大于零;
(4)指數、對數式的底必須大于零且不等于1.
(5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.
(6)指數為零底不可以等于零,
(7)實際問題中的函數的定義域還要保證實際問題有意義.
u 相同函數的判斷方法:①表達式相同(與表示自變量和函數值的字母無關);②定義域一致 (兩點必須同時具備)
2.值域 : 先考慮其定義域
(1)觀察法
(2)配方法
(3)代換法
3. 函數圖象知識歸納
(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 .
(2) 畫法
A、 描點法:
B、 圖象變換法
常用變換方法有三種
1) 平移變換
2) 伸縮變換
3) 對稱變換
4.區間的概念
(1)區間的分類:開區間、閉區間、半開半閉區間
(2)無窮區間
(3)區間的數軸表示.
5.映射
高一數學知識點匯總2
集合
(1)含n個元素的集合的子集數為2^n,真子集數為2^n-1;非空真子集的數為2^n-2;
(2)注意:討論的時候不要遺忘了的情況。
高中以來,同學們的學習任務日益繁重,作為主科的數學更是,如何更有效的學習數學呢。以下是由我為大家整理的“高一數學知識點歸納總結”,僅供參考,歡迎大家閱讀。
高一數學知識點歸納總結
一、集合
一、集合有關概念
1.集合的含義
2.集合的中元素的三個特性:
(1)元素的確定性如:世界上最高的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無序性: 如:{a,b,c}和{a,c,b}是表示同一個集合
3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
u注意:常用數集及其記法:
非負整數集(即自然數集) 記作:N
正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}
3)語言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集 含有有限個元素的集合
(2)無限集 含有無限個元素的集合
(3)空集 不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關系
1.“包含”關系—子集
注意:
有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
高一數學內容有《集合》、《函數》、《三角函數》、《向量》。
根據地區不同,有些地方是學習必修一和必修二,必滑顫修二的主要內容是《立體幾何》,簡單的《解析幾何》。有些地方是學習必修一和必修四,必修四的主信肆敗要內容是《三角函數》、《向量》。必修一是一定要學的,包括《集合》、《函數》。
高一數學怎么學
首先,在課堂教學中培養好的聽課習慣是很重要的;其次,要提高數學能力,堂上通過老師的教學,理解所學內容在教材中的地位,弄清與前后知識的聯系等,只有把握住教材,才能掌握學習的主動。
再次,要求在數學學習中一定要有節奏,這樣久而久之,思維的敏捷性和數學能力會逐步提高;最后,要沉淀下來,有價值的問題要及時抓住,遺留問題要雹頃有針對性地補,注重實效。
高一數學知識點總結:
1.函數的奇偶性
(1)若f(x)是偶函數,那么f(x)=f(-x)。
(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數)。
(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0)。
(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性。
(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在激正做對稱的單調區間內清歲有相反的單調性。
2.復合函數的有關問題
(1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f的定義域由不等式a≤g(x)≤b解出即可;若已知f的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。
(2)復合函數的單調性由“同增異減”判定。
3.函數圖像
(1)證明函數圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上。
(2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然。
(3)曲線C1:f(x,y)=0,關于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。
高一數學知識點如下:
1、如果一條直線的兩個點在一個平面內,那么這條直線上的所有點都在這個平面內。
2、元素的互異性如:由HAPPY的字母稿畢陸組成的集合{H,A,P,Y}。
3、偶次方根的被開方數不小于零,零取零次方沒有意義。
4、換元法:利用換元法數陵將函數轉化為二次函數求值域,適合根式內外皆為一鍵頃次式。
5、真子集:如果A?B,且A≠B那就說集合A是集合B的真子集,記作AB(或BA)。
以上就是數學高一知識點的全部內容,【篇一】高一年級數學知識點梳理 1、集合的含義:“集合”這個詞首先讓我們想到的是上體育課或者開會時老師經常喊的“全體集合”。數學上的“集合”和這個意思是一樣的,只不過一個是動詞一個是名詞而已。