韩国美女久久,久久久国际精品,激情小说亚洲图片,国产精品多人

當前位置: 首頁 > 高中 > 高中數(shù)學

高中所有數(shù)學公式,高一數(shù)學公式歸納

  • 高中數(shù)學
  • 2025-02-10

高中所有數(shù)學公式?1、圓體積=4/3Π(r^3)2、面積=Π(r^2)3、周長=2Πr 4、圓的標準方程(x-a)2+(y-b)2=r2【(a,b)是圓心坐標】5、圓的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】二.橢圓公式 1、橢圓周長公式:l=2πb+4(a-b)2、橢圓周長定理:橢圓的周長等于該橢圓短半軸,那么,高中所有數(shù)學公式?一起來了解一下吧。

數(shù)學公式高中集合

高中數(shù)學公式如下:

1、兩角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA)

cot(A-B)=(cotAcotB+1)/(cotB-cotA)

2、乘法與因式分解

a^2-b^2=(a+b)(a-b)

a^3+b^3=(a+b)(a^2-ab+b^2) 

a^3-b^3=(a-b(a^2+ab+b^2)

3、三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

4、正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圓半徑。

5、余弦定理 b^2=a^2+c^2-2accosB 注:角B是邊a和邊c的夾角。

高一數(shù)學公式歸納

定理1:0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義。

定理2:負數(shù)和零沒有對數(shù);loga(1)=0,loga(a)=1。

定理3:方程f(x)=0有實數(shù)根等價于函數(shù)y=f(x)的圖像與x軸有交點,等價于函數(shù)y=f(x)有零點。

定理4:零點的判定定理:如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖像是連續(xù)不斷的一條曲線,并且有f(a)乘f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,即存在c屬于(a,b),使得f(c)=0,這個c也就是方程f(x)=0的根。

定理5:空間中如果兩個角的兩邊分別對應平行,那么這兩個角相等或互補。

定理6:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。

定理7:一個平面內(nèi)的兩條相交直線與另一個平面平行,則這兩個平面平行。

定理8:一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。

定理9:如果兩個平行平面同時和第三個平面相交,那么它們的交線平行。

定理10:一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。

定理11:一個平面過另一個平面的垂線,則這兩個平面垂直。

高一的數(shù)學公式總結(jié)表

http://wendang.baidu.com/view/185eac51f01dc281e53af082.html

在百度文庫中有。

高中數(shù)學259個核心考點

高中所有數(shù)學公式整理

圓的公式

1、圓體積=4/3Π(r^3)

2、面積=Π(r^2)

3、周長=2Πr

4、圓的標準方程(x-a)2+(y-b)2=r2【(a,b)是圓心坐標】

5、圓的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】

二.橢圓公式

1、橢圓周長公式:l=2πb+4(a-b)

2、橢圓周長定理:橢圓的周長等于該橢圓短半軸,長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差.

3、橢圓面積公式:s=πab

4、橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。

以上橢圓周長、面積公式中雖然沒有出現(xiàn)橢圓周率t,但這兩個公式都是通過橢圓周率t推導演變而來。

三.兩角和公式

1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa

2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb

3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)

4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)

四.倍角公式

1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga

2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

五.半角公式

1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)

2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)

3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))

4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))

六.和差化積

1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)

2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)

3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb

5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb

七.等差數(shù)列

1、等差數(shù)列的通項公式為:an=a1+(n-1)d (1)

2、前n項和公式為:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)從(1)式可以看出,an是n的一次數(shù)函(d≠0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(shù)(d≠0)或一次函數(shù)(d=0,a1≠0),且常數(shù)項為0.在等差數(shù)列中,等差中項:一般設為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項.,且任意兩項am,an的關(guān)系為:an=am+(n-m)d它可以看作等差數(shù)列廣義的通項公式.

3、從等差數(shù)列的定義、通項公式,前n項和公式還可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}若m,n,p,q∈N*,且m+n=p+q,則有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數(shù)列,等等.和=(首項+末項)*項數(shù)÷2項數(shù)=(末項-首項)÷公差+1首項=2和÷項數(shù)-末項末項=2和÷項數(shù)-首項項數(shù)=(末項-首項)/公差+1

八.等比數(shù)列

1、等比數(shù)列的通項公式是:An=A1*q^(n-1)

2、前n項和公式是:Sn=[A1(1-q^n)]/(1-q)且任意兩項am,an的關(guān)系為an=am·q^(n-m)

3、從等比數(shù)列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}4、若m,n,p,q∈N*,則有:ap·aq=am·an,等比中項:aq·ap=2ar ar則為ap,aq等比中項.記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一個各項均為正數(shù)的等比數(shù)列各項取同底數(shù)數(shù)后構(gòu)成一個等差數(shù)列;反之,以任一個正數(shù)C為底,用一個等差數(shù)列的各項做指數(shù)構(gòu)造冪Can,則是等比數(shù)列.

九.拋物線

1、拋物線:y=ax*+bx+c就是y等于ax的平方加上bx再加上c。

高中數(shù)學公式一覽表

數(shù)學公式

1》 每份數(shù)×份數(shù)=總數(shù)

總數(shù)÷每份數(shù)=份數(shù)

總數(shù)÷份數(shù)=每份數(shù)

《2 》1倍數(shù)×倍數(shù)=幾倍數(shù)

幾倍數(shù)÷1倍數(shù)=倍數(shù)

幾倍數(shù)÷倍數(shù)=1倍數(shù)

《3 》速度×時間=路程

路程÷速度=時間

路程÷時間=速度

《4》: 單價×數(shù)量=總價

總價÷單價=數(shù)量

總價÷數(shù)量=單價

《5》: 工作效率×工作時間=工作總量

工作總量÷工作效率=工作時間

工作總量÷工作時間=工作效率

《6 》:加數(shù)+加數(shù)=和

和-一個加數(shù)=另一個加數(shù)

《7 》:被減數(shù)-減數(shù)=差

被減數(shù)-差=減數(shù)

差+減數(shù)=被減數(shù)

《8》: 因數(shù)×因數(shù)=積

積÷一個因數(shù)=另一個因數(shù)

《9》 :被除數(shù)÷除數(shù)=商

被除數(shù)÷商=除數(shù)

商×除數(shù)=被除數(shù)

《10》:小學數(shù)學圖形計算公式

1 正方形

C周長 S面積 a邊長

周長=邊長×4

C=4a

面積=邊長×邊長

S=a×a

2 正方體

V:體積 a:棱長

表面積=棱長×棱長×6

S表=a×a×6

體積=棱長×棱長×棱長

V=a×a×a

3 長方形

C周長 S面積 a邊長

周長=(長+寬)×2

C=2(a+b)

面積=長×寬

S=ab

4 長方體

V:體積 s:面積 a:長 b: 寬 h:高

(1)表面積(長×寬+長×高+寬×高)×2

S=2(ab+ah+bh)

(2)體積=長×寬×高

V=abh

5 三角形

s面積 a底 h高

面積=底×高÷2

s=ah÷2

三角形高=面積 ×2÷底

三角形底=面積 ×2÷高

6 平行四邊形

s面積 a底 h高

面積=底×高

s=ah

7 梯形

s面積 a上底 b下底 h高

面積=(上底+下底)×高÷2

s=(a+b)× h÷2

8 圓形

S面積 C周長 ∏ d=直徑 r=半徑

(1)周長=直徑×∏=2×∏×半徑

C=∏d=2∏r

(2)面積=半徑×半徑×∏

9 圓柱體

v:體積 h:高 s;底面積 r:底面半徑 c:底面周長

(1)側(cè)面積=底面周長×高

(2)表面積=側(cè)面積+底面積×2

(3)體積=底面積×高

(4)體積=側(cè)面積÷2×半徑

10 圓錐體

v:體積 h:高 s;底面積 r:底面半徑

體積=底面積×高÷3

總數(shù)÷總份數(shù)=平均數(shù)

和差問題的公式

(和+差)÷2=大數(shù)

(和-差)÷2=小數(shù)

和倍問題

和÷(倍數(shù)-1)=小數(shù)

小數(shù)×倍數(shù)=大數(shù)

(或者 和-小數(shù)=大數(shù))

差倍問題

差÷(倍數(shù)-1)=小數(shù)

小數(shù)×倍數(shù)=大數(shù)

(或 小數(shù)+差=大數(shù))

植樹問題

1 非封閉線路上的植樹問題主要可分為以下三種情形:

⑴如果在非封閉線路的兩端都要植樹,那么:

株數(shù)=段數(shù)+1=全長÷株距-1

全長=株距×(株數(shù)-1)

株距=全長÷(株數(shù)-1)

⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那么:

株數(shù)=段數(shù)=全長÷株距

全長=株距×株數(shù)

株距=全長÷株數(shù)

⑶如果在非封閉線路的兩端都不要植樹,那么:

株數(shù)=段數(shù)-1=全長÷株距-1

全長=株距×(株數(shù)+1)

株距=全長÷(株數(shù)+1)

2 封閉線路上的植樹問題的數(shù)量關(guān)系如下

株數(shù)=段數(shù)=全長÷株距

全長=株距×株數(shù)

株距=全長÷株數(shù)

盈虧問題

(盈+虧)÷兩次分配量之差=參加分配的份數(shù)

(大盈-小盈)÷兩次分配量之差=參加分配的份數(shù)

(大虧-小虧)÷兩次分配量之差=參加分配的份數(shù)

相遇問題

相遇路程=速度和×相遇時間

相遇時間=相遇路程÷速度和

速度和=相遇路程÷相遇時間

追及問題

追及距離=速度差×追及時間

追及時間=追及距離÷速度差

速度差=追及距離÷追及時間

流水問題

順流速度=靜水速度+水流速度

逆流速度=靜水速度-水流速度

靜水速度=(順流速度+逆流速度)÷2

水流速度=(順流速度-逆流速度)÷2

濃度問題

溶質(zhì)的重量+溶劑的重量=溶液的重量

溶質(zhì)的重量÷溶液的重量×100%=濃度

溶液的重量×濃度=溶質(zhì)的重量

溶質(zhì)的重量÷濃度=溶液的重量

利潤與折扣問題

利潤=售出價-成本

利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%

漲跌金額=本金×漲跌百分比

折扣=實際售價÷原售價×100%(折扣<1)

利息=本金×利率×時間

稅后利息=本金×利率×時間×(1-20%)

以上就是高中所有數(shù)學公式的全部內(nèi)容,一、代數(shù)公式 1. 二次公式:ax2 + bx + c = 0 的解為 x = [-b ± √] / 。2. 乘法公式:- = a2 - b2。- 2 = a2 + 2ab + b2。- 2 = a2 - 2ab + b2。二、三角函數(shù)公式 三角函數(shù)的和差公式、內(nèi)容來源于互聯(lián)網(wǎng),信息真?zhèn)涡枳孕斜鎰e。如有侵權(quán)請聯(lián)系刪除。

猜你喜歡

主站蜘蛛池模板: 青阳县| 阿巴嘎旗| 长治县| 弥渡县| 尼木县| 枣强县| 龙里县| 桃园县| 饶河县| 玉山县| 响水县| 藁城市| 神木县| 尼勒克县| 屏边| 阿图什市| 洞口县| 海盐县| 新晃| 龙门县| 屏东县| 铜川市| 钟祥市| 临桂县| 嘉峪关市| 克什克腾旗| 泾源县| 贞丰县| 千阳县| 武鸣县| 云浮市| 明水县| 丹阳市| 黔西| 海晏县| 南丰县| 乳源| 汾阳市| 广南县| 靖江市| 长沙市|