高中數(shù)學(xué)公式大全理科?ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA。(2)倍角公式:tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga;cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。那么,高中數(shù)學(xué)公式大全理科?一起來(lái)了解一下吧。
正弦定理
a/sinA=b/sinB=c/sinC=2R
注:
其中
R
表示三角形的外接圓半徑
余弦定理
b^2=a^2+c^2-2accosB
注:角B是邊a和邊c的夾角
圓的標(biāo)準(zhǔn)方程
(x-a)^2+(y-b)^2=^r2
注:(a,b)是圓心坐標(biāo)
圓的一般方程
x^2+y^2+Dx+Ey+F=0
注:D^2+E^2-4F>0
拋物線(xiàn)標(biāo)準(zhǔn)方程
y^2=2px
y^2=-2px
x^2=2py
x^2=-2py
直棱柱側(cè)面積
S=c*h
斜棱柱側(cè)面積
S=c'*h
正棱錐側(cè)面積
S=1/2c*h'
正棱臺(tái)側(cè)面積
S=1/2(c+c')h'
圓臺(tái)側(cè)面積
S=1/2(c+c')l=pi(R+r)l
球的表面積
S=4pi*r2
圓柱側(cè)面積
S=c*h=2pi*h
圓錐側(cè)面積
S=1/2*c*l=pi*r*l
弧長(zhǎng)公式
l=a*r
a是圓心角的弧度數(shù)r
>0
扇形面積公式
s=1/2*l*r
錐體體積公式
V=1/3*S*H
圓錐體體積公式
V=1/3*pi*r2h
斜棱柱體積
V=S'L
注:其中,S'是直截面面積,
L是側(cè)棱長(zhǎng)
柱體體積公式
V=s*h
圓柱體
V=pi*r2h
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2
-1=1-2(sina)^2
半角公式
sin(A/2)=√((1-cosA)/2)
sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)
cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA))
cot(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
某些數(shù)列前n項(xiàng)和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
5
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
常用導(dǎo)數(shù)公式
1.y=c(c為常數(shù))
y'=0
2.y=x^n
y'=nx^(n-1)
3.y=a^x
y'=a^xlna
y=e^x
y'=e^x
4.y=logax
y'=logae/x
y=lnx
y'=1/x
5.y=sinx
y'=cosx
6.y=cosx
y'=-sinx
7.y=tanx
y'=1/cos^2x
8.y=cotx
y'=-1/sin^2x
9.y=arcsinx
y'=1/√1-x^2
10.y=arccosx
y'=-1/√1-x^2
11.y=arctanx
y'=1/1+x^2
12.y=arccotx
y'=-1/1+x^2
高中數(shù)學(xué)理科是10本書(shū),文科是9本書(shū),數(shù)學(xué)公式非常多,如果基礎(chǔ)知識(shí)不扎實(shí),平時(shí)做題查閱公式就要浪費(fèi)很多時(shí)間。接下來(lái)是我為大家整理的高考數(shù)學(xué)公式總結(jié)歸納,希望大家喜歡!
高考數(shù)學(xué)公式總結(jié)歸納一
圓的公式
1、圓體積=4/3(pi)(r^3)
2、面積=(pi)(r^2)
3、周長(zhǎng)=2(pi)r
4、圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2【(a,b)是圓心坐標(biāo)】
5、圓的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】
橢圓公式
1、橢圓周長(zhǎng)公式:l=2πb+4(a-b)
2、橢圓周長(zhǎng)定理:橢圓的周長(zhǎng)等于該橢圓短半軸,長(zhǎng)為半徑的圓周長(zhǎng)(2πb)加上四倍的該橢圓長(zhǎng)半軸長(zhǎng)(a)與短半軸長(zhǎng)(b)的差.
3、橢圓面積公式:s=πab
4、橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長(zhǎng)半軸長(zhǎng)(a)與短半軸長(zhǎng)(b)的乘積。
以上橢圓周長(zhǎng)、面積公式中雖然沒(méi)有出現(xiàn)橢圓周率t,但這兩個(gè)公式都是通過(guò)橢圓周率t推導(dǎo)演變而來(lái)。
高考數(shù)學(xué)公式總結(jié)歸納二
乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b||a|+|b||a-b||a|+|b||a|b=-bab
|a-b||a|-|b|-|a|a|a|
一元二次方程的解-b+(b2-4ac)/2a-b-(b2-4ac)/2a
根與系數(shù)的關(guān)系x1+x2=-b/ax1_2=c/a注:韋達(dá)定理
判別式
b2-4ac=0注:方程有兩個(gè)相等的實(shí)根
b2-4ac0注:方程有兩個(gè)不等的實(shí)根
b2-4ac0注:方程沒(méi)有實(shí)根,有共軛復(fù)數(shù)根
三角函數(shù)公式
兩角和公式
sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa
cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb
tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)
ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)
倍角公式
tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(a/2)=((1-cosa)/2)sin(a/2)=-((1-cosa)/2)
cos(a/2)=((1+cosa)/2)cos(a/2)=-((1+cosa)/2)
tan(a/2)=((1-cosa)/((1+cosa))tan(a/2)=-((1-cosa)/((1+cosa))
ctg(a/2)=((1+cosa)/((1-cosa))ctg(a/2)=-((1+cosa)/((1-cosa))
和差化積
2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)
2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)
sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)
tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb
ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb
某些數(shù)列前n項(xiàng)和
1+2+3+4+5+6+7+8+9++n=n(n+1)/21+3+5+7+9+11+13+15++(2n-1)=n2
2+4+6+8+10+12+14++(2n)=n(n+1)12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+n3=n2(n+1)2/41_+2_+3_+4_+5_+6_++n(n+1)=n(n+1)(n+2)/3
正弦定理a/sina=b/sinb=c/sinc=2r注:其中r表示三角形的外接圓半徑
余弦定理b2=a2+c2-2accosb注:角b是邊a和邊c的夾角
圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)
圓的一般方程x2+y2+dx+ey+f=0注:d2+e2-4f0
拋物線(xiàn)標(biāo)準(zhǔn)方程y2=2pxy2=-2p_2=2pyx2=-2py
直棱柱側(cè)面積s=c_斜棱柱側(cè)面積s=c_
正棱錐側(cè)面積s=1/2c_正棱臺(tái)側(cè)面積s=1/2(c+c)h
圓臺(tái)側(cè)面積s=1/2(c+c)l=pi(r+r)l球的表面積s=4pi_2
圓柱側(cè)面積s=c_=2pi_圓錐側(cè)面積s=1/2__=pi__
弧長(zhǎng)公式l=a_a是圓心角的弧度數(shù)r0扇形面積公式s=1/2__
錐體體積公式v=1/3__圓錐體體積公式v=1/3_i_2h
斜棱柱體積v=sl注:其中,s是直截面面積,l是側(cè)棱長(zhǎng)
柱體體積公式v=s_圓柱體v=pi_2h
高考數(shù)學(xué)公式總結(jié)歸納三
拋物線(xiàn)公式
y = ax^2+bx+c 就是y等于ax的平方加上b
a > 0時(shí)開(kāi)口向上
a < 0時(shí)開(kāi)口向下
c = 0時(shí)拋物線(xiàn)經(jīng)過(guò)原點(diǎn)
b = 0時(shí)拋物線(xiàn)對(duì)稱(chēng)軸為y軸
拋物線(xiàn)標(biāo)準(zhǔn)方程:y^2=2px
它表示拋物線(xiàn)的焦點(diǎn)在x的正半軸上,焦點(diǎn)坐標(biāo)為(p/2,0)準(zhǔn)線(xiàn)方程為x=-p/2
由于拋物線(xiàn)的焦點(diǎn)可在任意半軸,故共有標(biāo)準(zhǔn)方程y^2=2px y^2=-2px x^2=2py x^2=-2py
面積公式
圓的體積公式 4/3(pi)(r^3)
圓的面積公式 (pi)(r^2)
圓的周長(zhǎng)公式 2(pi)r
正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圓半徑
余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角
圓的標(biāo)準(zhǔn)方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
拋物線(xiàn)標(biāo)準(zhǔn)方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱側(cè)面積 S=c_ 斜棱柱側(cè)面積 S=c'_
正棱錐側(cè)面積 S=1/2c_' 正棱臺(tái)側(cè)面積 S=1/2(c+c')h'
圓臺(tái)側(cè)面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi_2
圓柱側(cè)面積 S=c_=2pi_ 圓錐側(cè)面積 S=1/2__=pi__
弧長(zhǎng)公式 l=a_ a是圓心角的弧度數(shù)r>0 扇形面積公式 s=1/2__
錐體體積公式 V=1/3__ 圓錐體體積公式V=1/3_i_2h
斜棱柱體積 V=S'L 注:其中S'是直截面面積L是側(cè)棱長(zhǎng)
柱體體積公式 V=s_ 圓柱體V=pi_2h
高考數(shù)學(xué)公式總結(jié)歸納四
高中數(shù)學(xué)公式順口溜一、《集合與函數(shù)》
內(nèi)容子交并補(bǔ)集,還有冪指對(duì)函數(shù)。
2022高中必背88個(gè)數(shù)學(xué)公式有哪些,我整理了相關(guān)信息,希望會(huì)對(duì)大家有所幫助!
2022年高中必背數(shù)學(xué)公式有哪些
圓的公式
1、圓體積=4/3(pi)(r^3)
2、面積=(pi)(r^2)
3、周長(zhǎng)=2(pi)r
4、圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2【(a,b)是圓心坐標(biāo)】
5、圓的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】
橢圓公式
1、橢圓周長(zhǎng)公式:l=2πb+4(a-b)
2、橢圓周長(zhǎng)定理:橢圓的周長(zhǎng)等于該橢圓短半軸,長(zhǎng)為半徑的圓周長(zhǎng)(2πb)加上四倍的該橢圓長(zhǎng)半軸長(zhǎng)(a)與短半軸長(zhǎng)(b)的差.
3、橢圓面積公式:s=πab
4、橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長(zhǎng)半軸長(zhǎng)(a)與短半軸長(zhǎng)(b)的乘積。
以上橢圓周長(zhǎng)、面積公式中雖然沒(méi)有出現(xiàn)橢圓周率t,但這兩個(gè)公式都是通過(guò)橢圓周率t推導(dǎo)演變而來(lái)。
兩角和公式
1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa
2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb
3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)
4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)
倍角公式
1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga
2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)
2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)
3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))
4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))
和差化積
1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)
2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)
3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)
4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb
5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb
等差數(shù)列
1、等差數(shù)列的通項(xiàng)公式為:
an=a1+(n-1)d(1)
2、前n項(xiàng)和公式為:
Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
從(1)式可以看出,an是n的一次數(shù)函(d≠0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線(xiàn)上,由(2)式知,Sn是n的二次函數(shù)(d≠0)或一次函數(shù)(d=0,a1≠0),且常數(shù)項(xiàng)為0.
在等差數(shù)列中,等差中項(xiàng):一般設(shè)為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項(xiàng),且任意兩項(xiàng)am,an的關(guān)系為:
an=am+(n-m)d
它可以看作等差數(shù)列廣義的通項(xiàng)公式.
3、從等差數(shù)列的定義、通項(xiàng)公式,前n項(xiàng)和公式還可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N*,且m+n=p+q,則有
am+an=ap+aq
Sm-1=(2n-1)an,S2n+1=(2n+1)an+1
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數(shù)列,等等.
和=(首項(xiàng)+末項(xiàng))*項(xiàng)數(shù)÷2
項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1
首項(xiàng)=2和÷項(xiàng)數(shù)-末項(xiàng)
末項(xiàng)=2和÷項(xiàng)數(shù)-首項(xiàng)
項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))/公差+1
等比數(shù)列
1、等比數(shù)列的通項(xiàng)公式是:An=A1*q^(n-1)
2、前n項(xiàng)和公式是:Sn=[A1(1-q^n)]/(1-q)
且任意兩項(xiàng)am,an的關(guān)系為an=am·q^(n-m)
3、從等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
4、若m,n,p,q∈N*,則有:ap·aq=am·an,
等比中項(xiàng):aq·ap=2arar則為ap,aq等比中項(xiàng).
記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一個(gè)各項(xiàng)均為正數(shù)的等比數(shù)列各項(xiàng)取同底數(shù)數(shù)后構(gòu)成一個(gè)等差數(shù)列;反之,以任一個(gè)正數(shù)C為底,用一個(gè)等差數(shù)列的各項(xiàng)做指數(shù)構(gòu)造冪Can,則是等比數(shù)列.在這個(gè)意義下,我們說(shuō):一個(gè)正項(xiàng)等比數(shù)列與等差數(shù)列是“同構(gòu)”的.
性質(zhì):①若m、n、p、q∈N,且m+n=p+q,則am·an=ap*aq;
②在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列.
“G是a、b的等比中項(xiàng)”“G^2=ab(G≠0)”.
在等比數(shù)列中,首項(xiàng)A1與公比q都不為零.
拋物線(xiàn)
1、拋物線(xiàn):y=ax*+bx+c就是y等于ax的平方加上bx再加上c。
高中數(shù)學(xué)知識(shí)點(diǎn)全總結(jié)公式如下:
1、一元二次方程的解:-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a;根與系數(shù)的關(guān)系x1+x2=-b/ax1*x2=c/a注:韋達(dá)定理;判別式b2-4a=0注:方程有相等的兩實(shí)根;b2-4ac>0注:方程有兩個(gè)不相等的個(gè)實(shí)根;b2-4ac<0注:方程有共軛復(fù)數(shù)根。
2、立體圖形及平面圖形的公式:圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo);圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0;拋物線(xiàn)標(biāo)準(zhǔn)方程。y2=2pxy2=-2pxx2=2pyx2=-2py;直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c'*h;正棱錐側(cè)面積S=1/2c*h'正棱臺(tái)側(cè)面積S=1/2(c+c')h'。
圓臺(tái)側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi*r2;圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l;弧長(zhǎng)公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r;錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h;斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長(zhǎng);柱體體積公式V=s*h圓柱體V=pi*r2h。
1、兩角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a/2、半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))/3、和差化積 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB/
4、某些數(shù)列前n項(xiàng)和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n*2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
5、圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
6、拋物線(xiàn)標(biāo)準(zhǔn)方程 y2=2px y2=-2px x2=2py x2=-2py
7、直棱柱側(cè)面積 S=c*h 斜棱柱側(cè)面積 S=c*h
8、正棱錐側(cè)面積 S=1/2c*h 正棱臺(tái)側(cè)面積 S=1/2(c+c)h
9、圓臺(tái)側(cè)面積 S=1/2(c+c)l=pi(R+r)l 球的表面積 S=4pi*r2
以上就是高中數(shù)學(xué)公式大全理科的全部?jī)?nèi)容,二次平方差公式:\[a^2+2ab+b^2=(a+b)^2\]、二次平方和公式:\[a^2-2ab+b^2=(a-b)^2\]、余弦和與差公式:\[\cos(A\pmB)=\cosA\cosB\mp\sinA\sinB\]、。