韩国美女久久,久久久国际精品,激情小说亚洲图片,国产精品多人

當(dāng)前位置: 首頁 > 高中 > 高中數(shù)學(xué)

高一數(shù)學(xué)必修一公式,高中數(shù)學(xué)必修二公式總結(jié)

  • 高中數(shù)學(xué)
  • 2024-05-13

高一數(shù)學(xué)必修一公式?高一數(shù)學(xué)必修一所有公式歸納是如下:1、銳角三角函數(shù)公式:sinα=∠α的對(duì)邊/斜邊。2、三倍角公式:sin3α=4sinα·sin(π/3+α)sin(π/3-α)。3、輔助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t)。4、降冪公式:sin^2(α)=(1-cos(2α))/2=versin(2α)/2。5、那么,高一數(shù)學(xué)必修一公式?一起來了解一下吧。

高一數(shù)學(xué)必修一公式度數(shù)表

http://wenku.baidu.com/search?word=%B8%DF%D2%BB%CA%FD%D1%A7%B9%AB%CA%BD&lm=0&od=0

百度文庫里有

基礎(chǔ)較弱的高一數(shù)學(xué)教輔

同角三角函數(shù)間的基本關(guān)系式:

·平方關(guān)系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

·積的關(guān)系:

sinα=tanα*cosα cosα=cotα*sinα

tanα=sinα*secα cotα=cosα*cscα

secα=tanα*cscα cscα=secα*cotα

·倒數(shù)關(guān)系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

三角函數(shù)恒等變形公式

·兩角和與差的三角函數(shù):

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·輔助角公式:

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

·三倍角公式:

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

·半角公式:

sin(α/2)=正負(fù)√((1-cosα)/2)

cos(α/2)=正負(fù)√((1+cosα)/2)

tan(α/2)=正負(fù)√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

·降冪公式

sin^2(α)=(1-cos(2α))/2

cos^2(α)=(1+cos(2α))/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

·萬能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

·積化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和差化積公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·其他:

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

高一數(shù)學(xué)知識(shí)點(diǎn)歸納大全

最佳答案三角函數(shù)公式

兩角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化積

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些數(shù)列前n項(xiàng)和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑

余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角

弧長(zhǎng)公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r

乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根與系數(shù)的關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達(dá)定理

判別式

b2-4ac=0 注:方程有兩個(gè)相等的實(shí)根

b2-4ac>0 注:方程有兩個(gè)不等的實(shí)根

b2-4ac<0 注:方程沒有實(shí)根,有共軛復(fù)數(shù)根

降冪公式

(sin^2)x=1-cos2x/2

(cos^2)x=i=cos2x/2

萬能公式

令tan(a/2)=t

sina=2t/(1+t^2)

cosa=(1-t^2)/(1+t^2)

tana=2t/(1-t^2)

高中數(shù)學(xué)必修一公式整理

對(duì)數(shù)的運(yùn)算公式:

1、log(a) (M·N)=log(a) M+log(a) N

2、log(a) (M÷N)=log(a) M-log(a) N

3、log(a) M^n=nlog(a) M

4、log(a)b*log(b)a=1

5、log(a) b=log (c) b÷log (c) a

指數(shù)的運(yùn)算公式:

1、[a^m]×[a^n]=a^(m+n) 【同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加】

2、[a^m]÷[a^n]=a^(m-n) 【同底數(shù)冪相除,底數(shù)不變,指數(shù)相減】

3、[a^m]^n=a^(mn) 【冪的乘方,底數(shù)不變,指數(shù)相乘】

4、[ab]^m=(a^m)×(a^m) 【積的乘方,等于各個(gè)因式分別乘方,再把所得的冪相乘】

擴(kuò)展資料:

對(duì)數(shù)的發(fā)展歷史:

將對(duì)數(shù)加以改造使之廣泛流傳的是納皮爾的朋友布里格斯(H.Briggs,1561—1631),他通過研究《奇妙的對(duì)數(shù)定律說明書》,感到其中的對(duì)數(shù)用起來很不方便,于是與納皮爾商定,使1的對(duì)數(shù)為0,10的對(duì)數(shù)為1,這樣就得到了以10為底的常用對(duì)數(shù)。

由于所用的數(shù)系是十進(jìn)制,因此它在數(shù)值上計(jì)算具有優(yōu)越性。1624年,布里格斯出版了《對(duì)數(shù)算術(shù)》,公布了以10為底包含1~20000及90000~100000的14位常用對(duì)數(shù)表。

必修一指數(shù)函數(shù)公式

我可以。

但是你要有個(gè)好的心態(tài),先把一個(gè)公式背的滾瓜爛熟,然后再背其它的。這種方法包你得高分。我高考數(shù)學(xué)139山東的題。

以上就是高一數(shù)學(xué)必修一公式的全部?jī)?nèi)容,1、∫kdx=kx+C(k是常數(shù))。2、∫x^udx=(x^u+1)/(u+1)+c。3、∫1/xdx=ln|x|+c。4、∫dx=arctanx+C21+x1。5、∫dx=arcsinx+C21x。(配圖1)24個(gè)基本積分公式還有如下:6、∫cosxdx=sinx+C。7、∫sinxdx=cosx+C。8、∫sec∫csc2xdx=tanx+Cxdx=cotx+C2。9、。

猜你喜歡

主站蜘蛛池模板: 郸城县| 鸡东县| 靖西县| 关岭| 汝城县| 南京市| 大庆市| 临澧县| 铁力市| 沈阳市| 金溪县| 扶风县| 双城市| 哈尔滨市| 定远县| 鹤山市| 石楼县| 新乡县| 泾阳县| 扶绥县| 民乐县| 延吉市| 常德市| 道孚县| 罗田县| 海阳市| 鹰潭市| 涞源县| 甘洛县| 名山县| 虞城县| 滦平县| 新乡县| 定西市| 鄂伦春自治旗| 崇左市| 东方市| 威宁| 富裕县| 化德县| 延吉市|