韩国美女久久,久久久国际精品,激情小说亚洲图片,国产精品多人

當前位置: 首頁 > 高中 > 高中數(shù)學

高二導數(shù)知識點,高二導數(shù)知識點總結(jié)

  • 高中數(shù)學
  • 2023-08-03

高二導數(shù)知識點?證:1.顯而易見,y=c是一條平行于x軸的直線,所以處處的切線都是平行于x的,故斜率為0。用導數(shù)的定義做也是一樣的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。2.這個的`推導暫且不證,那么,高二導數(shù)知識點?一起來了解一下吧。

導數(shù)知識點思維導圖

【篇一】

一、直線與圓:

1、直線的傾斜角的范圍是

在平面直角坐標系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉(zhuǎn)到和直線重合時所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當直線與軸重合或平行時,規(guī)定傾斜角為0;

2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.

過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導的方法。

3、直線方程:⑴點斜式:直線過點斜率為,則直線方程為,

⑵斜截式:直線在軸上的截距為和斜率,則直線方程為

4、直線與直線的位置關(guān)系:

(1)平行A1/A2=B1/B2注意檢驗(2)垂直A1A2+B1B2=0

5、點到直線的距離公式;

兩條平行線與的距離是

6、圓的標準方程:.⑵圓的一般方程:

注意能將標準方程化為一般方程

7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.

8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長問題.①相離②相切③相交

9、解決直線與圓的關(guān)系問題時,要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長

二、圓錐曲線方程:

1、橢圓:①方程(a>b>0)注意還有一世寬個;②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;

2、雙曲線:①方程(a,b>0)注意還有一個;②定義:||PF1|-|PF2||=2a<2c;③e=;④實軸長為2a,虛軸長為2b,焦距為2c;漸塵返山進線或c2=a2+b2

3、拋物線:①方程y2=2px注意還有三個,能區(qū)別開口方向;②定義:|PF|=d焦點F(,0),準線x=-;③焦半徑;焦點弦=x1+x2+p;

4、直線被圓錐曲線截得的弦長公式:

5、注意解析幾何與向量結(jié)合問題:1、,.(1);(2).

2、數(shù)量積的定義:已知兩個非零向量a和b,它們的夾角為θ,則數(shù)量|a||b|cosθ叫做a與b的派中數(shù)量積,記作a·b,即

3、模的計算:|a|=.算??梢韵人阆蛄康钠椒?/p>

4、向量的運算過程中完全平方公式等照樣適用:

三、直線、平面、簡單幾何體:

1、學會三視圖的分析:

2、斜二測畫法應(yīng)注意的地方:

(1)在已知圖形中取互相垂直的軸Ox、Oy。

高中數(shù)學導數(shù)基礎(chǔ)知識

想要知道高二數(shù)學學些什么的小伙伴,趕緊來瞧瞧吧!下面由我為你精心準備了“高二數(shù)學知識點歸納總結(jié)?”,本文僅供參考,持續(xù)關(guān)注本站將可以持續(xù)獲取更多的資訊!

高二數(shù)學知識點歸納總結(jié)

一、集合、簡易邏輯

1.集合;2.子集;3.補集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件。

二、函數(shù)

1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴充;7.有理指數(shù)冪的運算;8.指數(shù)函數(shù);9.對數(shù);10.對數(shù)的運算性質(zhì);11.對數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例。

三、數(shù)列

1.數(shù)列;2.等差數(shù)列及其通項公式;3.等差數(shù)列前n項和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項和公式。

四、三角函數(shù)

1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4.單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。

高二導數(shù)知識點總結(jié)

導數(shù)基礎(chǔ)

導數(shù)(Derivative)是微積分中的重要基礎(chǔ)概念。當函數(shù)y=f(x)的自變量X在一點x0上產(chǎn)孫蔽衫生一個增量Δx時,函數(shù)輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時的極限a如果存在并脊,a即為在x0處的導數(shù),記作f'(x0)或df/dx(x0)。

1.y=c(c為常數(shù)) y'=0

2.y=x^n y'=nx^(n-1)

3.y=a^x y'=a^xlna

y=e^x y'=e^x

4.y=logax y'=logae/x

y=lnx y'=1/x

5.y=sinx y'=cosx

6.y=cosx y'=-sinx

7.y=tanx y'=1/cos^2x

8.y=cotx y'=-1/sin^2x

9.y=arcsinx y'=1/√1-x^2

10.y=arccosx y'=-1/√1-x^2

11.y=arctanx y'=1/1+x^2

12.y=arccotx y'=-1/1+x^2

在推導的過程中有這幾個常見的公式需要用到:

1.y=f[g(x)],y'=f'[g(x)]g'(x)『f'[g(x)]中g(shù)(x)看作整個變量,而g'(x)中把x看作變量』

2.y=u/v,y'=u'v-uv'/v^2

3.y=f(x)的反函數(shù)是x=g(y),則有y'=1/x'

證:1.顯而易見,y=c是一條平行于x軸的直線,所以處處的切線都是平行于x的,故斜率為0。

高二數(shù)學導數(shù)講解

因為高二開始努力,所以前面的知識肯定有一定的欠缺,這就要求自己要制定一定的計劃,更要比別人付出更多的努力,相信付出的汗水不會白白流淌的,收獲總是自己的。我網(wǎng)高二頻道為你整理凳頃了《高二數(shù)學重要知識點歸納》,助你金榜題名!

高二數(shù)學下冊知識點

1.求函數(shù)的單調(diào)性:

利用導數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導,(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)。

利用導數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間。

反過來,也可以利用導數(shù)由函數(shù)的單調(diào)性解決相關(guān)問題(如確定晌昌參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導,

(1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的宴粗扒x值不構(gòu)成區(qū)間);

(2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

(3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立。

高二數(shù)學有導數(shù)嗎

請不要埋怨學習的繁重,工作的勞苦,感情的負擔,因為真正的快樂,是奮戰(zhàn)后的結(jié)果,沒有經(jīng)歷深刻的痛苦,我們也就體會不到酣暢淋漓的快樂!從學習中可以體驗到很多樂趣的!以下是我給大家整理的高二數(shù)學會考知識點,希望能助你一臂之力!

高二數(shù)學會考知識點1

導數(shù)是微積分中的重要基礎(chǔ)概念。當函數(shù)y=f(x)的自變量x在一點x0上產(chǎn)生一個增量Δx時,函數(shù)輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時的極限a如果存在,a即為在x0處的導數(shù),記作f'(x0)或df(x0)/dx。

導數(shù)是函數(shù)的局部性質(zhì)。一個函數(shù)在某一點的導數(shù)描述了這個函數(shù)在這一點附近的變化率。如果函扮搏型數(shù)的自變量和取值都是實數(shù)的話,函數(shù)在某一點的導數(shù)就是該函數(shù)所代表的曲線在這一點上的切線斜率。導數(shù)的本質(zhì)是通過極限的概念對函數(shù)進行局部的線性逼近。例如在運動學中,物體的位移對于時間的導數(shù)就是物體的瞬時速度。

不是所有的函數(shù)都有導數(shù),一個函數(shù)也不一定在所有的點上都有導數(shù)。若某函數(shù)在某一點導數(shù)存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導。

對于可導的函數(shù)f(x),x?f'(x)也是一個函數(shù),稱作f(x)的導函數(shù)。

以上就是高二導數(shù)知識點的全部內(nèi)容,如果函數(shù)f(x)在(a,b)中每一點處都可導,則稱f(x)在(a,b)上可導,則可建立f(x)的導函數(shù),簡稱導數(shù),記為f'(x)如果f(x)在(a,b)內(nèi)可導,且在區(qū)間端點a處的右導數(shù)和端點b處的左導數(shù)都存在。

猜你喜歡

主站蜘蛛池模板: 田林县| 紫云| 武宣县| 曲靖市| 全椒县| 尉氏县| 普兰店市| 邛崃市| 镇沅| 东乡| 九龙坡区| 维西| 临夏县| 天等县| 黄骅市| 万载县| 涿鹿县| 拜城县| 宝丰县| 中超| 萨嘎县| 林甸县| 抚宁县| 白河县| 尤溪县| 岫岩| 静海县| 拜城县| 石河子市| 崇明县| 石屏县| 大姚县| 阜宁县| 敦煌市| 宁陕县| 昌黎县| 南充市| 九江县| 富源县| 海淀区| 绥棱县|