數學高二下學期知識點?高二數學下冊知識點總結1 1.拋物線是軸對稱圖形。對稱軸為直線 x=-b/2a。對稱軸與拋物線的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)2.拋物線有一個頂點P,坐標為 P(-b/2a,那么,數學高二下學期知識點?一起來了解一下吧。
【 #高二#導語】在學習新知識的同時還要復習以前的舊知識,肯定會累,所以要注意勞逸結合。只有充沛的晌攔精力才能迎接新的挑戰,才會有事半功倍的學習。高二頻道為你整理了《高二數學下學期知識點》希望對你的學習有所幫助!
1.高二數學下學期知識點
等腰直角三角形面積公式:S=a2/2,S=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)。
面積公式
若假設等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:
S=ab/2。
且由等腰直角三角形性質可知:底邊c上的高h=c/2,則三角面積可表示為:
S=ch/2=c2/4。
等腰直角三角形是一種特殊的三角形,具有所有三角形的性質:穩定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線角平分線垂線三線合一。
2.高二數學下學期知識點
導數是微積分中的重要基礎概念。當函數y=f(x)的自變量x在一點x0上產生一個增量Δx時,函數輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。
導數是函數的局部性質。一個函數在某一點的導數描述了這個函數在這一點附近的變化率。
臨近高三,數學在考試中占的比分較大,將數學重要知識點總結,能夠大大提高自己的學習效率。下面是由我為大家整理的“高二下學期數學重要知識點總結大全”,僅供參考,歡迎大家閱讀本文。
高二數學下冊知識點總結1
1.拋物線是軸對稱圖形。對稱軸為直線
x=-b/2a。
對稱軸與拋物線的交點為拋物線的頂點P。
特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點P,坐標為
P(-b/2a,旅搏穗(4ac-b^2)/4a)
當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。
3.二次項系數a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。
|a|越大,則拋物線的開口越小。
4.一次項系數b和二次項系數a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右。
5.常數項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點個數
Δ=b^2-4ac>0時,拋物線與x軸有2個交點。
Δ=b^2-4ac=0時,拋物線與x軸有1個交點。
1.高二數攜爛學下學期知識點總結
1、科學記數法:把一個數字寫成的形式的`記數方法。
2、統計圖:形象地表示收集到的數據的圖。
3、扇形統計圖:用圓和扇形來表示總體和部分的關系,扇形大小反映部分占總體的百分比的大小;在扇形統計圖中,每個部分占總體的百分比等于該部分對應的扇形圓心角與360°的比。
4、條形統計圖:清楚地表示出每個項目的具體數目。
5、折線統計圖:清楚地反映事物的變化情況。
6、確定事件包括:肯定會發生的必然事件和一定不會發生的不可能事件。
7、不確定事件:可能發生也可能不發生的事件;不確定事件發生的可能性大小不同;不確定。
8、事件的概率:可用事件結果除以所以可能結果求得理論概率。
9、有效數字:對于一個近似數,從左邊第一個不是0的數字起,到精確到的數位為止的數字。
10、游戲雙方公平:雙方獲勝的可能性相同。
11、算數平均數:簡稱“平均數”,最常用,受極端值得影響較大;加權平均數
12、中位數:數據按大小排列,處于中間位置的數,計算簡單,受極端值得影響較小。
13、眾數:一組數據中出現次數最多的數據,受極端值得影響較小,跟其他數據關系不大。
14、平均數、眾數、中位數都是數據的代表,刻畫了一組數據的“平均水平”。
【 #高二#導語】因為高二開塌旦始努力,所以前面的知識肯定有一定的欠缺,團穗擾這就要求自己要制定一定的計劃,更要族檔比別人付出更多的努力,相信付出的汗水不會白白流淌的,收獲總是自己的。高二頻道為你整理了《高二下學期數學知識點總結》,助你金榜題名!
【篇一】高二下學期數學知識點總結
1.定義法:
判斷B是A的條件,實際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關系畫出箭頭示意圖,再利用定義判斷即可。
2.轉換法:
當所給命題的充要條件不易判斷時,可對命題進行等價裝換,例如改用其逆否命題進行判斷。
3.集合法
在命題的條件和結論間的關系判斷有困難時,可從集合的角度考慮,記條件p、q對應的集合分別為A、B,則:
若A?B,則p是q的充分條件。
若A?B,則p是q的必要條件。
若A=B,則p是q的充要條件。
若A?B,且B?A,則p是q的既不充分也不必要條件。
【篇二】高二下學期數學知識點總結
1.拋物線是軸對稱圖形。對稱軸為直線
x=-b/2a。
對稱軸與拋物線的交點為拋物線的頂點P。
特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點P,坐標為
P(-b/2a,(4ac-b^2)/4a)
當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。
【一】
一、定義與定義式:
自變量x和因變量y有如下關系:
y=kx+b
則此時稱y是x的一次函數。
特別地,當b=0時,y是x的正比例函數。
即:y=kx(k為常數,k≠0)
二、一次函數的性質:
1.y的變化值與對應的x的變化值成正比例,比值為k
即:y=kx+b(k為任意不為零的實數b取任何實數)
2.當x=0時,b為函數在y軸上的截距。
三、一次函數的圖像及性質:
1.作法與圖形:通過如下3個步驟
(1)列表;
(2)描點;
(3)連線,可以作出一次函數的圖像——一條直線。因此,作一次函數的圖像只需知道2點,并連成直線即可。(通常找函數圖像與x軸和y軸的交點)
2.性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過原點。
3.k,b與函數圖像所在象限:
當k>0時,直線必通過一、三象限,y隨x的增大而增大;
當k<0時,直線必通過二、四象限,y隨x的增大而減小。
當b>0時,直線必通過一、二象限;
當b=0時,直線通過原點
當b<0時,直線必通過三、四象限。
特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖像。
以上就是數學高二下學期知識點的全部內容,高二數學下學期知識點總結 一、直線與圓:1、直線的傾斜角 的范圍是 在平面直角坐標系中,對于一條與 軸相交的直線 ,如果把 軸繞著交點按逆時針方向轉到和直線 重合時所轉的最小正角記為, 就叫做直線的傾斜角。