韩国美女久久,久久久国际精品,激情小说亚洲图片,国产精品多人

當前位置: 高中學習網 > 高中 > 高中數學

高中必修一數學公式整理,高一數學上冊所有公式

  • 高中數學
  • 2025-01-01

高中必修一數學公式整理?ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)。【倍角公式】。tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga。cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。【半角公式】。sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)。那么,高中必修一數學公式整理?一起來了解一下吧。

高一數學公式

高一數學必修一所有公式歸納如下:

【兩角和公式】。

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA。

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB。

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)。

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)。

【倍角公式】。

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga。

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。

【半角公式】。

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)。

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)。

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))。

高一數學公式歸納

數學必修一數學公式如下:

1、2sinAcosB=sin(A+B)+sin(A-B)。

2、tan(A+B)=(tanA+tanB)/(1-tanAtanB)。

3、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。

4、tan(A-B)=(tanA-tanB)/(1+tanAtanB)。

5、-ctgA+ctgBsin(A+B)/sinAsinB。

數學必修一公式歸納:

一、指數與指數冪的運算

1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.

當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開方數(radicand).

當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。

注意:當是奇數時,當是偶數時。

高中數學259個核心考點

必修一數學公式整理有如下:

一、sinh-1 x dx = x sinh-1 x-+ C

二、cosh-1 x dx = x cosh-1 x-+ C

三、tanh-1 x dx = x tanh-1 x+ ln | 1-x2|+ C

四、coth-1 x dx = x coth-1 x- ln | 1-x2|+ C

五、sech-1 x dx = x sech-1 x- sin-1 x + C

六、csch-1 x dx = x csch-1 x+ sinh-1 x + C

七、sin 3θ=3sinθ-4sin3θ

八、cos3θ=4cos3θ-3cosθ

九、→sin3θ= (3sinθ-sin3θ)

十、→cos3θ= (3cosθ+cos3θ)

高一數學必修一公式總結

1. 過兩點有且只有一條直線。

2. 兩點之間線段最短。

3. 同角或等角的補角相等。

4. 同角或等角的余角相等。

5. 過一點有且只有一條直線和已知直線垂直。

6. 直線外一點與直線上各點連接的所有線段中,垂線段最短。

7. 平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

8. 如果兩條直線都和第三條直線平行,這兩條直線也互相平行。

9. 同位角相等,兩直線平行。

10. 內錯角相等,兩直線平行。

11. 同旁內角互補,兩直線平行。

12. 兩直線平行,同位角相等。

13. 兩直線平行,內錯角相等。

14. 兩直線平行,同旁內角互補。

15. 定理:三角形兩邊的和大于第三邊。

16. 推論:三角形兩邊的差小于第三邊。

17. 三角形內角和定理:三角形三個內角的和等于180°。

18. 推論1:直角三角形的兩個銳角互余。

19. 推論2:三角形的一個外角等于和它不相鄰的兩個內角的和。

20. 推論3:三角形的一個外角大于任何一個和它不相鄰的內角。

21. 全等三角形的對應邊、對應角相等。

22. 邊角邊公理(SAS):有兩邊和它們的夾角對應相等的兩個三角形全等。

23. 角邊角公理(ASA):有兩角和它們的夾邊對應相等的兩個三角形全等。

高中數學必背104個公式

平方關系:

sin^2α+cos^2α=1

1+tan^2α=sec^2α

1+cot^2α=csc^2α

·積的關系:

sinα=tanα×cosα

cosα=cotα×sinα

tanα=sinα×secα

cotα=cosα×cscα

secα=tanα×cscα

cscα=secα×cotα

·倒數關系:

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1

商的關系:

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

直角三角形ABC中,

角A的正弦值就等于角A的對邊比斜邊,

余弦等于角A的鄰邊比斜邊

正切等于對邊比鄰邊,

·[1]三角函數恒等變形公式

·兩角和與差的三角函數:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·三角和的三角函數:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

·輔助角公式:

Asinα+Bcosα=(A2+B2)^(1/2)sin(α+t),其中

sint=B/(A2+B2)^(1/2)

cost=A/(A2+B2)^(1/2)

tant=B/A

Asinα-Bcosα=(A2+B2)^(1/2)cos(α-t),tant=A/B

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)

tan(2α)=2tanα/[1-tan2(α)]

·三倍角公式:

sin(3α)=3sinα-4sin3(α)=4sinα·sin(60+α)sin(60-α)

cos(3α)=4cos3(α)-3cosα=4cosα·cos(60+α)cos(60-α)

tan(3α)=tan a · tan(π/3+a)· tan(π/3-a)

·半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

·降冪公式

sin2(α)=(1-cos(2α))/2=versin(2α)/2

cos2(α)=(1+cos(2α))/2=covers(2α)/2

tan2(α)=(1-cos(2α))/(1+cos(2α))

·萬能公式:

sinα=2tan(α/2)/[1+tan2(α/2)]

cosα=[1-tan2(α/2)]/[1+tan2(α/2)]

tanα=2tan(α/2)/[1-tan2(α/2)]

·積化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和差化積公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·推導公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos2α

1-cos2α=2sin2α

1+sinα=(sinα/2+cosα/2)2

·其他:

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

sin2(α)+sin2(α-2π/3)+sin2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx

證明:

左邊=2sinx(cosx+cos2x+...+cosnx)/2sinx

=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (積化和差)

=[sin(n+1)x+sinnx-sinx]/2sinx=右邊

等式得證

sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx

證明:

左邊=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)

=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)

=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右邊

等式得證

誘導公式

公式一:

設α為任意角,終邊相同的角的同一三角函數的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α與 -α的三角函數值之間的關系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α與α的三角函數值之間的關系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

正弦定理是指在三角形中,各邊和它所對的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .(其中R為外接圓的半徑)

余弦定理是指三角形中任何一邊的平方等于其它兩邊的平方和減去這兩邊與它們夾角的余弦的積的2倍,即a^2=b^2+c^2-2bc cosA

角A的對邊于斜邊的比叫做角A的正弦,記作sinA,即sinA=角A的對邊/斜邊

斜邊與鄰邊夾角a

sin=y/r

無論y>x或y≤x

無論a多大多小可以任意大小

正弦的最大值為1 最小值為-1

三角恒等式

對于任意非直角三角形中,如三角形ABC,總有tanA+tanB+tanC=tanAtanBtanC

證明:

已知(A+B)=(π-C)

所以tan(A+B)=tan(π-C)

則(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

整理可得

tanA+tanB+tanC=tanAtanBtanC

類似地,我們同樣也可以求證:當α+β+γ=nπ(n∈Z)時,總有tanα+tanβ+tanγ=tanαtanβtanγ

向量計算

設a=(x,y),b=(x',y')。

以上就是高中必修一數學公式整理的全部內容,24個基本積分公式:1、∫kdx=kx+C(k是常數)。2、∫x^udx=(x^u+1)/(u+1)+c。3、∫1/xdx=ln|x|+c。4、∫dx=arctanx+C21+x1。5、∫dx=arcsinx+C21x。(配圖1)24個基本積分公式還有如下:6、∫cosxdx=sinx+C。7、∫sinxdx=cosx+C。8、∫sec∫csc2xdx=tanx+Cxdx=cotx+C2。

猜你喜歡

主站蜘蛛池模板: 象山县| 精河县| 东乌珠穆沁旗| 娄烦县| 沭阳县| 周宁县| 东光县| 北流市| 特克斯县| 白山市| 聊城市| 蚌埠市| 扶风县| 济宁市| 永寿县| 杭州市| 政和县| 石渠县| 筠连县| 双辽市| 海原县| 邯郸市| 潼南县| 尖扎县| 江津市| 原阳县| 宁城县| 社会| 宝鸡市| 隆回县| 镇康县| 武胜县| 岑溪市| 宁夏| 泰来县| 明星| 云阳县| 巨鹿县| 琼结县| 巨野县| 阿拉善盟|