高二數(shù)學(xué)必修二?1.高二年級數(shù)學(xué)必修二知識點(diǎn)歸納 直線和平面垂直 直線和平面垂直的定義:如果一條直線a和一個平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。那么,高二數(shù)學(xué)必修二?一起來了解一下吧。
高中數(shù)學(xué)難度更大,特別是高二數(shù)學(xué),具有承上啟下的作用,學(xué)好數(shù)學(xué)就是要掌握主要知識點(diǎn)。下面是我給大家?guī)淼母叨?shù)學(xué)知識點(diǎn)大全必修二,希望對你有幫助。
高二數(shù)學(xué)知識點(diǎn)大全必修二
第1章 空間幾何體1
1 .1柱、錐、臺、球的結(jié)構(gòu)特征
1. 2空間幾何體的三視圖和直觀圖
11 三視圖:
正視圖:從前往后
側(cè)視圖:從左往右
俯視圖:從上往下
22 畫三視圖的原則:
長對齊、高對齊、寬相等
33直觀圖:斜二測畫法
44斜二測畫法的步驟:
(1).平行于坐標(biāo)軸的線依然平行于坐標(biāo)軸;
(2).平行于y軸的線長度變半,平行于x,z軸的線長度不變;
(3).畫法要寫好。
5 用斜二測畫法畫出長方體的步驟:(1)畫軸(2)畫底面(3)畫側(cè)棱(4)成圖
1.3 空間幾何體的表面積與體積
(一)空間幾何體的表面積
1棱柱、棱錐的表面積: 各個面面積之和
2 圓柱的表面積 3 圓錐的表面積
4 圓臺的表面積
5 球的表面積
(二)空間幾何體的體積
1柱體的體積
2錐體的體積
3臺體的體積
4球體的體積
第二章直線與平面的位置關(guān)系
2.1空間點(diǎn)、直線、平面之間的位置關(guān)系
2.1.1
1 平面含義:平面是無限延展的
2 平面的畫法及表示
(1)平面的畫法:水平放置的平面通常畫成一個平行四邊形,銳角畫成450,且橫邊畫成鄰邊的2倍長(如圖)
(2)平面通常用希臘字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形的四個頂點(diǎn)或者相對的兩個頂點(diǎn)的大寫字母來表示,如平面AC、平面ABCD等。
【 #高二#導(dǎo)語】在學(xué)習(xí)新知識的同時(shí)還要復(fù)習(xí)以前的舊知識,肯定會累,所以要注意勞逸結(jié)合。只有充沛的精力才能迎接新的挑戰(zhàn),才會有事半功倍的學(xué)習(xí)。 考 網(wǎng)高二頻道為你整理了《高二數(shù)學(xué)必修二知識點(diǎn)整理》希望對你的學(xué)習(xí)有所幫助!
1.高二數(shù)學(xué)必修二知識點(diǎn)整理
一、基礎(chǔ)知識
(1)空間幾何體:典型多面體(棱柱、棱錐、棱臺)與典型旋轉(zhuǎn)體(圓柱、圓錐、圓臺、球)的結(jié)構(gòu)特征以及表面積體積公式、球面距離、點(diǎn)面距離、中心投影與平行投影、三視圖、直觀圖;
(2)點(diǎn)、線、面的位置關(guān)系:平面的三個公理、平行的傳遞性、等角定理、異面直線的概念、直線與平面的位置關(guān)系、平面與平面的位置關(guān)系、仿枯線面平行的概念、判定定理、性質(zhì)定理;面面平行的概念、判定定理、性質(zhì)定理;線面垂直的概念、判定定理、性質(zhì)定理;面面垂直的概念、判定定理與性質(zhì)定理;異面垂直、異面直線所成角、線面角與二面角的概念(不同版本出現(xiàn)時(shí)間略有不同).
(3)直線與圓:直線的傾斜角與斜率、斜率公式、直線的方程(點(diǎn)斜式、斜截式、一般式、兩點(diǎn)式、截距式)、直線與直線的位置關(guān)系(平行、垂直)、平面直角坐標(biāo)系中的一些公式(兩點(diǎn)間距離公式、中點(diǎn)坐標(biāo)公式、點(diǎn)到直線的距離公式、平行睜滾線間的距離公式);圓的標(biāo)準(zhǔn)方程與一般方程、直線與圓的位置關(guān)系、圓與圓的位置關(guān)系.
常用的拓展知識與結(jié)論有:截距坐標(biāo)公式、面積坐標(biāo)公式、圓上一點(diǎn)的切線方程;圓外一點(diǎn)的切點(diǎn)弦方程;直線系與圓系的相關(guān)知識等.
想不起來,或者不太悉大余清楚這些概念與定理的,趕快翻翻教材和筆記吧.
二、重難點(diǎn)與易錯點(diǎn)
重難點(diǎn)與易錯點(diǎn)部分配合必考題型使用,做完必考題型后會對重難點(diǎn)與易錯部分部分有更深入的理解.
(1)多面體的體積轉(zhuǎn)化及點(diǎn)面距離的求法;
(2)較復(fù)雜的三視圖;
(3)球與其它幾何體的組合;
(4)平行與垂直的證明;
(5)立體幾何中的動態(tài)問題.
(6)直線方程的選擇與求解,特別要注意斜率不存在的直線;
(7)直線與圓的位置關(guān)系問題;
(8)直線系相關(guān)的問題.
2.高二數(shù)學(xué)必修二知識點(diǎn)整理
一、基礎(chǔ)知識
(1)常用邏輯用語:四種命題(原、逆、否、逆否)及其相互關(guān)系;充分條件與必要條件;簡單的邏輯聯(lián)結(jié)詞(或、且、非);全稱量詞與存在性量詞,全稱命題與特稱命題的否定.
(2)圓錐曲線:曲線與方程;求軌跡的常用步驟;橢圓的定義及其標(biāo)準(zhǔn)方程、橢圓的簡單幾何性質(zhì)(注意離心率與形狀的關(guān)系);雙曲線的定義及其標(biāo)準(zhǔn)方程、雙曲線的簡單幾何性質(zhì)(注意雙曲線的漸近線)、等軸雙曲線與共軛雙曲線;拋物線的定義及其標(biāo)準(zhǔn)方程;拋物線的簡單幾何性質(zhì);直線與圓錐曲線的常用公式(弦長公式、兩根差公式).
圓錐曲線的幾何性質(zhì)的常用拓展還有:焦半徑公式、橢圓與雙曲線的焦準(zhǔn)定義、橢圓與雙曲線的“垂徑定理”、焦點(diǎn)三角形面積公式、圓錐曲線的光學(xué)性質(zhì)等等.
(3)空間向量與立體幾何:空間向量的概念、表示與運(yùn)算(加法、減法、數(shù)乘、數(shù)量積);空間向量基本定理、空間向量運(yùn)算的坐標(biāo)表示;平面的法向量、用空間向量計(jì)算空間的角與距離的方法.
二、重難點(diǎn)與易錯點(diǎn)
重難點(diǎn)與易錯點(diǎn)部分配合必考題型使用,做完必考題型后會對重難點(diǎn)與易錯部分部分有更深入的理解.
(1)區(qū)分逆命題與命題的否定;
(2)理解充分條件與必要條件;
(3)橢圓、雙曲線與拋物線的定義;
(4)橢圓與雙曲線的幾何性質(zhì),特別是離心率問題;
(5)直線與圓錐曲線的位置關(guān)系問題;
(6)直線與圓錐曲線中的弦長與面積問題;
(7)直線與圓錐曲線問題中的參數(shù)求解與性質(zhì)證明;
(8)軌跡與軌跡求法;
(9)運(yùn)用空間向量求空間中的角度與距離;
(10)立體幾何中的動態(tài)問題探究.
3.高二數(shù)學(xué)必修二知識點(diǎn)整理
(1)數(shù)列的概念和簡單表示法
了解數(shù)列的概念和幾種簡單的表示方法(列表、圖象、通項(xiàng)公式).
了解數(shù)列是自變量為正整數(shù)的一類函數(shù).
(2)等差數(shù)列、等比數(shù)列
理解等差數(shù)列、等比數(shù)列的概念.
掌握等差數(shù)列、等比數(shù)列的通項(xiàng)公式與前項(xiàng)和公式.
能在具體的問題情境中,識別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識解決相應(yīng)的問題.
了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.
了解現(xiàn)實(shí)世界和日常生活中的不等關(guān)系,了解不等式(組)的實(shí)際背景.
(2)一元二次不等式
會從實(shí)際情境中抽象出一元二次不等式模型.
通過函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.
會解一元二次不等式,對給定的一元二次不等式,會設(shè)計(jì)求解的程序框圖.
(3)二元一次不等式組與簡單線性規(guī)劃問題
會從實(shí)際情境中抽象出二元一次不等式組.
了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.
會從實(shí)際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.
(4)基本不等式:
了解基本不等式的證明過程.
會用基本不等式解決簡單的(小)值問題圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)
4.高二數(shù)學(xué)必修二知識點(diǎn)整理
一、求動點(diǎn)的軌跡方程的基本步驟
建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動點(diǎn)M的坐標(biāo);
寫出點(diǎn)M的集合;
列出方程=0;
化簡方程為最簡形式;
檢驗(yàn)。
【 #高二#導(dǎo)語】在學(xué)習(xí)新知識的同時(shí)還要復(fù)習(xí)以前的舊知識,肯定會累,所以要注意勞逸結(jié)合。只有充沛的精力才能迎接新的挑戰(zhàn),才會有事半功倍的學(xué)習(xí)。高二頻道為你整理了《高二年級數(shù)學(xué)必修二知識點(diǎn)歸納》希望對你的學(xué)習(xí)有所幫助!
1.高二年級數(shù)學(xué)必修二知識點(diǎn)歸納
直線和平面垂直
直線和平面垂直的定義:如果一條直線a和一個平面內(nèi)的任意一條直線都垂直高陸,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。
直線與平面垂直的判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面。
直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。③直線和平面平行——沒有公共點(diǎn)
直線和平面平行的定義:如果一條直線和一個平面沒有公共點(diǎn),那么我們就說這條直線和這個平面平行。
直線和平面平行的判定定理:如果平面外一條直線和這個仔御平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。
直線和平面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。
2.高二年級數(shù)學(xué)必修二知識點(diǎn)歸納
1、柱、錐、臺、球的結(jié)構(gòu)特征
(1)棱柱:
幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.
(2)棱錐
幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方.
(3)棱臺:
幾何特征:上下底面是相似的平行多邊形側(cè)面是梯形側(cè)棱交于原棱錐的頂點(diǎn)
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成
幾何特征:底面是全等的圓;母線與軸平行;軸與底面圓的半徑垂直;側(cè)面展開圖是一個矩形.
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:底面是一個圓;母線交于圓錐的頂點(diǎn);側(cè)面展開圖是一個扇形.
(6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋戚戚頃轉(zhuǎn)一周所成
幾何特征:上下底面是兩個圓;側(cè)面母線交于原圓錐的頂點(diǎn);側(cè)面展開圖是一個弓形.
(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:球的截面是圓;球面上任意一點(diǎn)到球心的距離等于半徑.
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、
俯視圖(從上向下)
注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度.
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點(diǎn):原來與x軸平行的線段仍然與x平行且長度不變;
原來與y軸平行的線段仍然與y平行,長度為原來的一半.
4、柱體、錐體、臺體的表面積與體積
(1)幾何體的表面積為幾何體各個面的面積的和.
(2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)
(3)柱體、錐體、臺體的體積公式
3.高二年級數(shù)學(xué)必修二知識點(diǎn)歸納
公式一:
設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α與-α的三角函數(shù)值之間的關(guān)系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
4.高二年級數(shù)學(xué)必修二知識點(diǎn)歸納
(1)總體和樣本:
①在統(tǒng)計(jì)學(xué)中,把研究對象的全體叫做總體.
②把每個研究對象叫做個體.
③把總體中個體的總數(shù)叫做總體容量.
④為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:x1,x2,....,_研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量.
(2)簡單隨機(jī)抽樣,也叫純隨機(jī)抽樣。
【 #高二#導(dǎo)語】在學(xué)習(xí)新知識的同時(shí)還要復(fù)習(xí)以前的舊知識,肯定會累,所以要注意勞逸結(jié)合。只有充沛的精力才能迎接新的挑戰(zhàn),才會有事半功倍的學(xué)習(xí)。高二頻道為你整理了《高二數(shù)學(xué)必修二知識點(diǎn)總結(jié)》希望對你的學(xué)習(xí)有所幫助!
1.高二數(shù)學(xué)必修二知識點(diǎn)總結(jié)
空間兩條直線只有三種位嫌祥褲置關(guān)系:平行、相交、異面
1、按是否共面可分為兩類:
(1)共面:平行、相交
(2)異面:
異面直線的定義:不同在任何一個平面內(nèi)的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)芹簡不經(jīng)過該點(diǎn)的直線是異面直線。
兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法
兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法
2、若從有無公共點(diǎn)的角度看可分為兩類:
(1)有且僅有一個公共點(diǎn)——相交直線;
(2)沒有公共點(diǎn)——平行或異面
直線和平面的位置關(guān)系:
直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行
①直線在平面內(nèi)——有無數(shù)個公共點(diǎn)
②直線和平面相交——有且只有一個公宴螞共點(diǎn)
直線與平面所成的角:平面的一條斜線和它在這個平面內(nèi)的射影所成的銳角。
2.高二數(shù)學(xué)必修二知識點(diǎn)總結(jié)
等比數(shù)列的基本性質(zhì)
⑴公比為q的等比數(shù)列,從中取出等距離的項(xiàng),構(gòu)成一個新數(shù)列,此數(shù)列仍是等比數(shù)列,其公比為q(m為等距離的項(xiàng)數(shù)之差).
⑵對任何m、n,在等比數(shù)列{a}中有:a=a·q,特別地,當(dāng)m=1時(shí),便得等比數(shù)列的通項(xiàng)公式,此式較等比數(shù)列的通項(xiàng)公式更具有普遍性.
⑶一般地,如果t,k,p,…,m,n,r,…皆為自然數(shù),且t+k,p,…,m+…=m+n+r+…(兩邊的自然數(shù)個數(shù)相等),那么當(dāng){a}為等比數(shù)列時(shí),有:a.a.a.…=a.a.a.
⑷若{a}是公比為q的等比數(shù)列,則{|a|}、{a}、{ka}、{}也是等比數(shù)列,其公比分別為|q|}、{q}、{q}.
⑸如果{a}是等比數(shù)列,公比為q,那么,a,a,a,…,a,…是以q為公比的等比數(shù)列.
⑹如果{a}是等比數(shù)列,那么對任意在n,都有a·a=a·q>0.
⑺兩個等比數(shù)列各對應(yīng)項(xiàng)的積組成的數(shù)列仍是等比數(shù)列,且公比等于這兩個數(shù)列的公比的積.
⑻當(dāng)q>1且a>0或00且01時(shí),等比數(shù)列為遞減數(shù)列;當(dāng)q=1時(shí),等比數(shù)列為常數(shù)列;當(dāng)q
很多人都認(rèn)為數(shù)學(xué)很難學(xué),但只要你經(jīng)常不斷地學(xué)習(xí),你就李茄什么都知道。你知道得越多,你就越有力量。下面給大家?guī)硪恍└叨?shù)學(xué)必修二知識點(diǎn)總結(jié),希望對大家有所幫助。
高二數(shù)學(xué)必修二知識點(diǎn)1
立體幾何初步
1、柱、錐、臺、球的結(jié)構(gòu)特征
(1)棱柱:
幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.
(2)棱錐
幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方.
(3)棱臺:
幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形.
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:①底面是一個圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個扇形.
(6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個弓形.
(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑.
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、
俯視圖(從上向下)
注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度.
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點(diǎn):①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半.
4、柱體、錐體、臺體的表面積與體積
(1)幾何體的表面積為幾何體各個面的面積的和.
(2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)
(3)柱體、錐體、臺體的體積公式
高二數(shù)學(xué)必修二知識點(diǎn)2
直線與方程
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.
當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),不存在.
②過兩點(diǎn)的直線的斜率公式:
注意下面四點(diǎn):(1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角滾滾為90°;
(2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到.
(3)直線方程
①點(diǎn)斜式:直線斜大擾余率k,且過點(diǎn)
注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1.
當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1.
②斜截式:,直線斜率為k,直線在y軸上的截距為b
③兩點(diǎn)式:()直線兩點(diǎn),
④截矩式:
其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為.
⑤一般式:(A,B不全為0)
注意:各式的適用范圍特殊的方程如:
(4)平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));
(5)直線系方程:即具有某一共同性質(zhì)的直線
(一)平行直線系
平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))
(二)垂直直線系
垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))
(三)過定點(diǎn)的直線系
(ⅰ)斜率為k的直線系:,直線過定點(diǎn);
(ⅱ)過兩條直線,的交點(diǎn)的直線系方程為
(為參數(shù)),其中直線不在直線系中.
(6)兩直線平行與垂直
注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否.
(7)兩條直線的交點(diǎn)
相交
交點(diǎn)坐標(biāo)即方程組的一組解.
方程組無解;方程組有無數(shù)解與重合
(8)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個點(diǎn)
(9)點(diǎn)到直線距離公式:一點(diǎn)到直線的距離
(10)兩平行直線距離公式
在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解.
高二數(shù)學(xué)必修二知識點(diǎn)3
圓的方程
1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長為圓的半徑.
2、圓的方程
(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;
(2)一般方程
當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為
當(dāng)時(shí),表示一個點(diǎn);當(dāng)時(shí),方程不表示任何圖形.
(3)求圓方程的方法:
一般都采用待定系數(shù)法:先設(shè)后求.確定一個圓需要三個獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置.
高二數(shù)學(xué)必修二知識點(diǎn)4
直線與圓的位置關(guān)系:
直線與圓的位置關(guān)系有相離,相切,相交三種情況:
(1)設(shè)直線,圓,圓心到l的距離為,則有;;
(2)過圓外一點(diǎn)的切線:①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
(3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.
設(shè)圓,
兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.
當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;
當(dāng)時(shí)兩圓外切,連心線過切點(diǎn),有外公切線兩條,內(nèi)公切線一條;
當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過切點(diǎn),只有一條公切線;
當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓.
注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線
5、空間點(diǎn)、直線、平面的位置關(guān)系
公理1:如果一條直線的兩點(diǎn)在一個平面內(nèi),那么這條直線是所有的點(diǎn)都在這個平面內(nèi).
應(yīng)用:判斷直線是否在平面內(nèi)
用符號語言表示公理1:
公理2:如果兩個不重合的平面有一個公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線
符號:平面α和β相交,交線是a,記作α∩β=a.
符號語言:
公理2的作用:
①它是判定兩個平面相交的方法.
②它說明兩個平面的交線與兩個平面公共點(diǎn)之間的關(guān)系:交線必過公共點(diǎn).
③它可以判斷點(diǎn)在直線上,即證若干個點(diǎn)共線的重要依據(jù).
公理3:經(jīng)過不在同一條直線上的三點(diǎn),有且只有一個平面.
推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.
公理3及其推論作用:①它是空間內(nèi)確定平面的依據(jù)②它是證明平面重合的依據(jù)
公理4:平行于同一條直線的兩條直線互相平行
高二數(shù)學(xué)必修二知識點(diǎn)總結(jié)相關(guān)文章:
★高中數(shù)學(xué)必修二知識點(diǎn)總結(jié)
★高中數(shù)學(xué)必修二知識點(diǎn)總結(jié)(復(fù)習(xí)提綱)
★高中數(shù)學(xué)必修2空間幾何體知識點(diǎn)歸納總結(jié)
★高二數(shù)學(xué)知識點(diǎn)總結(jié)
★高一數(shù)學(xué)必修二公式總結(jié)全
★高一數(shù)學(xué)必修二所有公式總結(jié)
★高二數(shù)學(xué)知識點(diǎn)總結(jié)選修2
★高中數(shù)學(xué)填空題的常用解題方法與必修二知識點(diǎn)全面總結(jié)
★高二數(shù)學(xué)考點(diǎn)知識點(diǎn)總結(jié)復(fù)習(xí)大綱
★高二數(shù)學(xué)知識點(diǎn)小結(jié)
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "hm.baidu/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0];s.parentNode.insertBefore(hm, s); })();以上就是高二數(shù)學(xué)必修二的全部內(nèi)容,注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視; b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想。 2.3.2平面與平面垂直的判定 1、。