高中數(shù)學(xué)三角恒等變換?三角恒等變換是《高中數(shù)學(xué)必修4》。《高中數(shù)學(xué)必修4》是2007年人民教育出版社出版圖書,新課標(biāo)教材,必修系列中第4本,普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修4 A版。數(shù)學(xué)4(必修)的內(nèi)容包括三角函數(shù)、平面向量、三角恒等變換。那么,高中數(shù)學(xué)三角恒等變換?一起來(lái)了解一下吧。
2a-b=2(a-b)+b
tan(a-b)=1/2,tan2(a-b)=2tan(a-b)/[1-tan^2(a-b)]=4/3
tan(吵纖逗2a-b)=[tan2(a-b)+tanb]/[1-tan2(a-b)tanb]=1
a,b屬于(0,π),2a-b屬于(-π,2π),因升賣此2a-b=π/4或5π/4
同上理易求tana=1/3,所以a屬于(豎瞎0,π/2),b屬于(π/2,π)
所以2a-b屬于(-π,3π/2),所以2a-b=π/4
是。
根據(jù)查詢學(xué)科網(wǎng)顯示,三角恒等變換是高一上學(xué)期數(shù)學(xué)人教A版(2019)必修第一冊(cè)中的內(nèi)容,在第5章,章節(jié)名稱是簡(jiǎn)單的三角恒等變換。
三角恒等變換就是利用兩角和與差悶御的正弦、余弦、正切公式、倍半角公式等進(jìn)行簡(jiǎn)單的恒等變換明昌,三角螞槐巖恒等變換位于三角函數(shù)與數(shù)學(xué)變換的結(jié)合點(diǎn)上。
兩角和與差的三角函數(shù):
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α+β)=sinα·cosβ+cosα·sinβ
sin(α-β)=sinα·cosβ-cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
二倍角公式:
sin(2α)=2sinα·cosα
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
三倍角公式:
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
半角公式:
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
萬(wàn)能公式:
半角的正弦、余弦和正切公式(降冪擴(kuò)角公式)
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/猜銷2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
積化陵兆猛尺橋和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
cos2α=(cosα)^2-(sinα)^2
sin2α=2sinαcosα
cos2α/[sin2α+(cosα)^2]
=[(cosα)^2-(sinα)^2]/[2sinαcosα+(cosα)^2] (分子或辯譽(yù)衫段分灶差母同除以(cosα)^2)
=[1-(tanα)^2]/[2tanα+1]
常見(jiàn)的三角恒等式戚棚
設(shè)A,B,C是三角形寬仔則的三個(gè)內(nèi)角
tanA+tanB+tanC=tanAtanBtanC
cotAcotB+cotBcotC+cotCcotA=1
(cosA)^2+(cosB)^2+(cosC)^2+2cosAcosBcosC=1
cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2)
tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1
sin2A+sin2B+sin2C=4sinAsinBsinC
sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)
二倍角公式
sin2A=2sinA?cosA
cos2A=cos^2A-sin^2A=1-2sin^2A=2cos^2A-1
tan2A=(2tanA)/(1-tan^2A)
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a = tan a · tan(π/3+a)· tan(π/3-a)
三倍角公式推導(dǎo)
sin3a
=sin(2a+a)
=sin2acosa+cos2asina
=2sina(1-sin^2a)+(1-2sin^2a)sina
=3sina-4sin^3a
慎棚cos3a
=cos(2a+a)
=cos2acosa-sin2asina
=(2cos^2a-1)cosa-2(1-cos^a)cosa
=4cos^3a-3cosa
sin3a=3sina-4sin^3a
=4sina(3/4-sin^2a)
=4sina[(√3/2)^2-sin^2a]
=4sina(sin^260°-sin^2a)
=4sina(sin60°+sina)(sin60°-sina)
=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]
=4sinasin(60°+a)sin(60°-a)
cos3a=4cos^3a-3cosa
=4cosa(cos^2a-3/4)
=4cosa[cos^2a-(√3/2)^2]
=4cosa(cos^2a-cos^230°)
=4cosa(cosa+cos30°)(cosa-cos30°)
=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}
=-4cosasin(a+30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
=-4cosacos(60°-a)[-cos(60°+a)]
=4cosacos(60°-a)cos(60°+a)
上述兩式相比可得
tan3a=tanatan(60°-a)tan(60°+a)
半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
和差化積
sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]
cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]
cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
積化和差
sinαsinβ = [cos(α-β)-cos(α+β)] /2
cosαcosβ = [cos(α+β)+cos(α-β)]/2
sinαcosβ = [sin(α+β)+sin(α-β)]/2
cosαsinβ = [sin(α+β)-sin(α-β)]/2
雙曲函數(shù)
sinh(a) = [e^a-e^(-a)]/2
cosh(a) = [e^a+e^(-a)]/2
tanh(a) = sin h(a)/cos h(a)
公式一:
設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二:
設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三:
任意角α與 -α的三角函數(shù)值之間的關(guān)系:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四:
利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式五:
利用公式-和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
公式六:
π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:
sin(π/2+α)= cosα
cos(π/2+α)= -sinα
tan(π/2+α)= -cotα
cot(π/2+α)= -tanα
sin(π/2-α)= cosα
cos(π/2-α)= sinα
tan(π/2-α)= cotα
cot(π/2-α)= tanα
sin(3π/2+α)= -cosα
cos(3π/2+α)= sinα
tan(3π/2+α)= -cotα
cot(3π/2+α)= -tanα
sin(3π/2-α)= -cosα
cos(3π/2-α)= -sinα
tan(3π/2-α)= cotα
cot(3π/2-α)= tanα
(以上k∈Z)
A·sin(ωt+θ)+ B·sin(ωt+φ) =
√{(A^2 +B^2 +2ABcos(θ-φ)} ? sin{ ωt + arcsin[ (A?sinθ+B?sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} }
√表示根號(hào),包括{……}中的內(nèi)容
誘導(dǎo)公式
sin(-α) = -sinα
cos(-α) = cosα
tan (-α)=-tanα
sin(π/2-α) = cosα
cos(π/2-α) = sinα
sin(π/2+α) = cosα
cos(π/2+α) = -sinα
sin(π-α) = sinα
cos(π-α) = -cosα
sin(π+α) = -sinα
cos(π+α) = -cosα
tanA= sinA/cosA
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
tan(π-α)=-tanα
tan(π+α)=tanα
誘導(dǎo)公式記背訣竅:奇變偶不變,符號(hào)看象限
其它公式
(1) (sinα)^2+(cosα)^2=1
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2
證明下面兩式,只需將一式,左右同除(sinα)^2,第二個(gè)除(cosα)^2即可
(4)對(duì)于任意非直角三角形,總有
tanA+tanB+tanC=tanAtanBtanC
證:
A+B=π-C
tan(A+B)=tan(π-C)
(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
得證
同樣可以得證,當(dāng)x+y+z=nπ(n∈Z)時(shí),該關(guān)系式也成立
由tanA+tanB+tanC=tanAtanBtanC可得出以下結(jié)論
(5)cotAcotB+cotAcotC+cotBcotC=1
(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC
(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC
其他非重點(diǎn)三角函數(shù)
csc(a) = 1/sin(a)
sec(a) = 1/cos(a)
以上就是高中數(shù)學(xué)三角恒等變換的全部?jī)?nèi)容,=1 ∴√3sina-cosa=1 又(sina)^2+(cosa)^2=1,且a是銳角 得sina=√3/2,cosa=1/2 a=60° (2)f(x)=cos2x+2sinx =1-2sin 2 x+2sinx =-2(sinx-1/2)2 +3/2 當(dāng)sinx=1/2時(shí)。