高中數(shù)學(xué)必修知識點?1.必修課程由5個模塊組成: 必修1:集合,函數(shù)概念與基本初等函數(shù)(指數(shù)函數(shù),冪函數(shù),對數(shù)函數(shù)) 必修2:立體幾何初步、平面解析幾何初步。 必修3:算法初步、統(tǒng)計、概率。 必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。 必修5:解三角形、數(shù)列、不等式。那么,高中數(shù)學(xué)必修知識點?一起來了解一下吧。
1. 必修1:函數(shù)與極限,導(dǎo)數(shù)與微分,積分與應(yīng)用,平面解析幾何,立體幾何,概率統(tǒng)計,數(shù)列,不等式與不等式組,復(fù)數(shù)。
2. 必修2:方程與不等式,函數(shù)與極限,導(dǎo)數(shù)與微分,積分與應(yīng)用,數(shù)列,概率統(tǒng)計,線性代數(shù)初步,解析幾何,數(shù)學(xué)應(yīng)用。
3. 必修3:幾何證明,平面向量,概率統(tǒng)計,復(fù)數(shù),數(shù)學(xué)應(yīng)用。
4. 必修4:三角函數(shù),平面向量,數(shù)列,不等式與不等式組,解析幾何,概率統(tǒng)計,數(shù)學(xué)應(yīng)用。
5. 必修5:數(shù)列,三角函數(shù),平面向量,解析幾何,概率統(tǒng)計,線性代數(shù),數(shù)學(xué)應(yīng)用。
注意:以上僅為部分知識點,具體內(nèi)容以實際教材為準(zhǔn)。
高中數(shù)學(xué)必修一的知識點總結(jié)如下:
一、集合
集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象被稱為元素。
集合中元素的三個特性:
元素的確定性:對于一個給定的集合,集合中的元素是確定的,任何一個對象要么是這個集合的元素,要么不是。
元素的互異性:任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
元素的無序性:集合中的元素是平等的,沒有先后順序。因此,判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
集合的整體性和確定性:集合元素的三個特性使集合本身具有了確定性和整體性。
這些知識點是高中數(shù)學(xué)必修一中關(guān)于集合部分的基礎(chǔ)內(nèi)容,對于后續(xù)的數(shù)學(xué)學(xué)習(xí)和理解其他數(shù)學(xué)概念都具有重要意義。
高中數(shù)學(xué)有3002知識點
清北助學(xué)團隊的邱崇學(xué)長研究高考真題發(fā)現(xiàn),高中數(shù)學(xué)知識點共3002個,但高考必考常考題考點共259個,其中核心考點84個,經(jīng)過反復(fù)測試和運用,涵蓋了所有選填題型。其中有20多個方法連任何基礎(chǔ)都沒有的小白,也能在1分內(nèi)學(xué)會。
必修課程由5個模塊組成:必修1:集合、函數(shù)概念與基本初等函數(shù)(指、對、冪函數(shù))必修2:立體幾何初步、平面解析幾何初步。必修3:算法初步、統(tǒng)計、概率。必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。必修5:解三角形、數(shù)列、不等式。
重難點及考點:重點:函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導(dǎo)數(shù)難點:函數(shù)、圓錐曲線集合與簡易邏輯:集合的概念與運算、簡易邏輯、充要條件;函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)與指數(shù)函數(shù)、對數(shù)與對數(shù)函數(shù)、函數(shù)的應(yīng)用;數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求和、數(shù)列的應(yīng)用
三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和、差、倍、半公式、求值、化簡、證明、三角函數(shù)的圖象與性質(zhì)、三角函數(shù)的應(yīng)用;平面向量:有關(guān)概念與初等運算、坐標(biāo)運算、數(shù)量積及其應(yīng)用;不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應(yīng)用;
直線和圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系;圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問題、圓錐曲線的應(yīng)用;直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量;
排列、組合和概率:排列、組合應(yīng)用題、二項式定理及其應(yīng)用;概率與統(tǒng)計:概率、分布列、期望、方差、抽樣、正態(tài)分布;導(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用;復(fù)數(shù):復(fù)數(shù)的概念與運算
面對即將到來的高考,還沒有確定學(xué)習(xí)計劃的同學(xué)們,以下是由我為大家整理的“高考數(shù)學(xué)必考知識點歸納總結(jié) ”,僅供參考,歡迎大家閱讀。
高中數(shù)學(xué)重要知識點歸納
1.必修課程由5個模塊組成:
必修1:集合,函數(shù)概念與基本初等函數(shù)(指數(shù)函數(shù),冪函數(shù),對數(shù)函數(shù))
必修2:立體幾何初步、平面解析幾何初步。
必修3:算法初步、統(tǒng)計、概率。
必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。
必修5:解三角形、數(shù)列、不等式。
以上所有的知識點是所有高中生必須掌握的,而且要懂得運用。
選修課程分為4個系列:
系列1:2個模塊
選修1-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何。
選修1-2:統(tǒng)計案例、推理與證明、數(shù)系的擴充與復(fù)數(shù)、框圖
系列2: 3個模塊
選修2-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何
選修2-2:導(dǎo)數(shù)及其應(yīng)用、推理與證明、數(shù)系的擴充與復(fù)數(shù)
選修2-3:計數(shù)原理、隨機變量及其分布列、統(tǒng)計案例
選修4-1:幾何證明選講
選修4-4:坐標(biāo)系與參數(shù)方程
選修4-5:不等式選講
2.高考數(shù)學(xué)必考重難點及其考點:
重點:函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導(dǎo)數(shù)
難點:函數(shù),圓錐曲線
高考相關(guān)考點:
1. 集合與邏輯:集合的邏輯與運算(一般出現(xiàn)在高考卷的第一道選擇題)、簡易邏輯、充要條件
2. 函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)函數(shù)、對數(shù)函數(shù)、函數(shù)的應(yīng)用
3. 數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求通項、求和
4. 三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和差倍半公式、求值、化簡、證明、三角函數(shù)的圖像及其性質(zhì)、應(yīng)用
5. 平面向量:初等運算、坐標(biāo)運算、數(shù)量積及其應(yīng)用
6. 不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式(經(jīng)常出現(xiàn)在大題的選做題里)、不等式的應(yīng)用
7. 直線與圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系
8. 圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問題、圓錐曲線的應(yīng)用
9. 直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量
10. 排列、組合和概率:排列、組合應(yīng)用題、二項式定理及其應(yīng)用
11. 概率與統(tǒng)計:概率、分布列、期望、方差、抽樣、正態(tài)分布
12. 導(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用
13. 復(fù)數(shù):復(fù)數(shù)的概念與運算
高中數(shù)學(xué)易錯知識點整理
一.集合與函數(shù)
1.進行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進行求解.
2.在應(yīng)用條件時,易A忽略是空集的情況
3.你會用補集的思想解決有關(guān)問題嗎?
4.簡單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?
5.你知道“否命題”與“命題的否定形式”的區(qū)別.
6.求解與函數(shù)有關(guān)的問題易忽略定義域優(yōu)先的原則.
7.判斷函數(shù)奇偶性時,易忽略檢驗函數(shù)定義域是否關(guān)于原點對稱.
8.求一個函數(shù)的解析式和一個函數(shù)的反函數(shù)時,易忽略標(biāo)注該函數(shù)的定義域.
9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào).例如:.
10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值,作差,判正負)和導(dǎo)數(shù)法
11.求函數(shù)單調(diào)性時,易錯誤地在多個單調(diào)區(qū)間之間添加符號“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示.
12.求函數(shù)的值域必須先求函數(shù)的定義域。
高三數(shù)學(xué)重要知識點精選總結(jié)1
1.課程內(nèi)容:
必修課程由5個模塊組成:
必修1:集合、函數(shù)概念與基本初等函數(shù)(指、對、冪函數(shù))
必修2:立體幾何初步、平面解析幾何初步。
必修3:算法初步、統(tǒng)計、概率。
必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。
必修5:解三角形、數(shù)列、不等式。
以上是每一個高中學(xué)生所必須學(xué)習(xí)的。
上述內(nèi)容覆蓋了高中階段傳統(tǒng)的數(shù)學(xué)基礎(chǔ)知識和基本技能的主要部分,其中包括集合、函數(shù)、數(shù)列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎(chǔ)的同時,進一步強調(diào)了這些知識的發(fā)生、發(fā)展過程和實際應(yīng)用,而不在技巧與難度上做過高的要求。
此外,基礎(chǔ)內(nèi)容還增加了向量、算法、概率、統(tǒng)計等內(nèi)容。
2.重難點及考點:
重點:函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導(dǎo)數(shù)
難點:函數(shù)、圓錐曲線
高考相關(guān)考點:
⑴集合與簡易邏輯:集合的概念與運算、簡易邏輯、充要條件
⑵函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)與指數(shù)函數(shù)、對數(shù)與對數(shù)函數(shù)、函數(shù)的應(yīng)用
⑶數(shù)列:數(shù)列的有關(guān)概念等差數(shù)列等比數(shù)列、數(shù)列求和、數(shù)列的應(yīng)用
⑷三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和、差、倍、半公式、求值、化簡、證明、三角函數(shù)的圖象與性質(zhì)、三角函數(shù)的應(yīng)用
⑸平面向量:有關(guān)概念與初等運算、坐標(biāo)運算、數(shù)量積及其應(yīng)用
⑹不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應(yīng)用
⑺直線和圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系
⑻圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問題、圓錐曲線的應(yīng)用
⑼直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量
⑽排列、組合和概率:排列、組合應(yīng)用題、二項式定理及其應(yīng)用
⑾概率與統(tǒng)計:概率、分布列、期望、方差、抽樣、正態(tài)分布
⑿導(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用
⒀復(fù)數(shù):復(fù)數(shù)的概念與運算
高三數(shù)學(xué)重要知識點精選總結(jié)2
①正棱錐各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高).
②正棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個直角三角形.
⑶特殊棱錐的頂點在底面的射影位置:
①棱錐的側(cè)棱長均相等,則頂點在底面上的射影為底面多邊形的外心.
②棱錐的側(cè)棱與底面所成的角均相等,則頂點在底面上的射影為底面多邊形的外心.
③棱錐的各側(cè)面與底面所成角均相等,則頂點在底面上的射影為底面多邊形內(nèi)心.
④棱錐的頂點到底面各邊距離相等,則頂點在底面上的射影為底面多邊形內(nèi)心.
⑤三棱錐有兩組對棱垂直,則頂點在底面的射影為三角形垂心.
⑥三棱錐的三條側(cè)棱兩兩垂直,則頂點在底面上的射影為三角形的垂心.
⑦每個四面體都有外接球,球心0是各條棱的中垂面的交點,此點到各頂點的距離等于球半徑;
⑧每個四面體都有內(nèi)切球,球心
是四面體各個二面角的平分面的交點,到各面的距離等于半徑.
[注]:i.各個側(cè)面都是等腰三角形,且底面是正方形的棱錐是正四棱錐.(×)(各個側(cè)面的等腰三角形不知是否全等)
ii.若一個三角錐,兩條對角線互相垂直,則第三對角線必然垂直.
簡證:AB⊥CD,AC⊥BD
BC⊥AD.令得,已知則.
iii.空間四邊形OABC且四邊長相等,則順次連結(jié)各邊的中點的四邊形一定是矩形.
iv.若是四邊長與對角線分別相等,則順次連結(jié)各邊的中點的四邊是一定是正方形.
簡證:取AC中點,則平面90°易知EFGH為平行四邊形
EFGH為長方形.若對角線等,則為正方形.
高三數(shù)學(xué)重要知識點精選總結(jié)3
立體幾何初步
(1)棱柱:
定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
以上就是高中數(shù)學(xué)必修知識點的全部內(nèi)容,1. 必修1:函數(shù)與極限,導(dǎo)數(shù)與微分,積分與應(yīng)用,平面解析幾何,立體幾何,概率統(tǒng)計,數(shù)列,不等式與不等式組,復(fù)數(shù)。2. 必修2:方程與不等式,函數(shù)與極限,導(dǎo)數(shù)與微分,積分與應(yīng)用,數(shù)列,概率統(tǒng)計,線性代數(shù)初步,解析幾何,數(shù)學(xué)應(yīng)用。3. 必修3:幾何證明,平面向量,概率統(tǒng)計,復(fù)數(shù),數(shù)學(xué)應(yīng)用。內(nèi)容來源于互聯(lián)網(wǎng),信息真?zhèn)涡枳孕斜鎰e。如有侵權(quán)請聯(lián)系刪除。