高二數(shù)學(xué)數(shù)列公式匯總?等差數(shù)列的通項(xiàng)公式為:an=a1+(n-1)d (1)前n項(xiàng)和公式為:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)從(1)式可以看出,an是n的一次數(shù)函(d≠0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線上,由(2)式知,那么,高二數(shù)學(xué)數(shù)列公式匯總?一起來(lái)了解一下吧。
【 #高二#導(dǎo)語(yǔ)】高二年級(jí)有兩大特點(diǎn):一、教學(xué)進(jìn)度快。一年要完成二年的課程。二、高一的新鮮過(guò)了,距離高考尚遠(yuǎn),最容易玩的瘋、走的遠(yuǎn)的時(shí)候。導(dǎo)致:心理上的迷茫期,學(xué)業(yè)上進(jìn)的緩慢期,自我約束的松散期,易誤入歧路,大浪淘沙的篩選期。因此,直面高二的挑戰(zhàn),認(rèn)清高二,認(rèn)清高二的自己,認(rèn)清高二的任務(wù),顯得意義十分重大而迫切。 無(wú) 高二頻道為你整理了《高二年級(jí)數(shù)學(xué)必修五等差數(shù)列知識(shí)點(diǎn)歸納》,希望對(duì)你的學(xué)習(xí)有所幫助!
【一】
1.等差數(shù)列通項(xiàng)公式
an=a1+(n-1)d
n=1時(shí)a1=S1
n≥2時(shí)an=Sn-Sn-1
an=kn+b(k,b為常數(shù))推導(dǎo)過(guò)程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b
2.等差中項(xiàng)
由三個(gè)數(shù)a,A,b組成的等差數(shù)列可以堪稱最簡(jiǎn)單的等差數(shù)列。這時(shí),A叫做a與b的等差中項(xiàng)(arithmeticmean)。
有關(guān)系:A=(a+b)÷2
3.前n項(xiàng)和
倒序相加法推導(dǎo)前n項(xiàng)和公式:
Sn=a1+a2+a3+·····+an
=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①
Sn=an+an-1+an-2+······+a1
=an+(an-d)+(an-2d)+······+[an-(n-1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個(gè))=n(a1+an)
∴Sn=n(a1+an)÷2
等差數(shù)列的前n項(xiàng)和等于首末兩項(xiàng)的和與項(xiàng)數(shù)乘積的一半:
Sn=n(a1+an)÷2=na1+n(n-1)d÷2
Sn=dn2÷2+n(a1-d÷2)
亦可得
a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n
an=2sn÷n-a1
有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1
4.等差數(shù)列性質(zhì)
一、任意兩項(xiàng)am,an的關(guān)系為:
an=am+(n-m)d
它可以看作等差數(shù)列廣義的通項(xiàng)公式。
數(shù)列是以正整數(shù)集為定義域的函數(shù),是一列有序的數(shù)。數(shù)列中的每一個(gè)數(shù)都叫做這個(gè)數(shù)列的項(xiàng)。下面我給大家分享一些數(shù)學(xué)數(shù)列知識(shí)點(diǎn),希望能夠幫助大家,歡迎閱讀分享!
數(shù)學(xué)數(shù)列知識(shí)點(diǎn)1
等差數(shù)列
1.等差數(shù)列通項(xiàng)公式
an=a1+(n-1)d
n=1時(shí)a1=S1
n≥2時(shí)an=Sn-Sn-1
an=kn+b(k,b為常數(shù))推導(dǎo)過(guò)程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b
2.等差中項(xiàng)
由三個(gè)數(shù)a,A,b組成的等差數(shù)列可以堪稱最簡(jiǎn)單的等差數(shù)列。這時(shí),A叫做a與b的等差中項(xiàng)(arithmeticmean)。
有關(guān)系:A=(a+b)÷2
3.前n項(xiàng)和
倒序相加法推導(dǎo)前n項(xiàng)和公式:
Sn=a1+a2+a3+·····+an
=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①
Sn=an+an-1+an-2+······+a1
=an+(an-d)+(an-2d)+······+[an-(n-1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個(gè))=n(a1+an)
∴Sn=n(a1+an)÷2
等差數(shù)列的前n項(xiàng)和等于首末兩項(xiàng)的和與項(xiàng)數(shù)乘積的一半:
Sn=n(a1+an)÷2=na1+n(n-1)d÷2
Sn=dn2÷2+n(a1-d÷2)
亦可得
a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n
an=2sn÷n-a1
有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1
4.等差數(shù)列性質(zhì)
一、任意兩項(xiàng)am,an的關(guān)系為:
an=am+(n-m)d
它可以看作等差數(shù)列廣義的通項(xiàng)公式。
數(shù)列基本公式:
9、一般數(shù)列的通項(xiàng)an與前n項(xiàng)和Sn的關(guān)系:an=
10、等差數(shù)列的通項(xiàng)公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項(xiàng)、ak為已知的第k項(xiàng)) 當(dāng)d≠0時(shí),an是關(guān)于n的一次式;當(dāng)d=0時(shí),an是一個(gè)常數(shù)。
11、等差數(shù)列的前n項(xiàng)和公式:Sn= Sn= Sn=
當(dāng)d≠0時(shí),Sn是關(guān)于n的二次式且常數(shù)項(xiàng)為0;當(dāng)d=0時(shí)(a1≠0),Sn=na1是關(guān)于n的正比例式。
12、等比數(shù)列的通項(xiàng)公式: an= a1 qn-1 an= ak qn-k
(其中a1為首項(xiàng)、ak為已知的第k項(xiàng),an≠0)
13、等比數(shù)列的前n項(xiàng)和公式:當(dāng)q=1時(shí),Sn=n a1 (是關(guān)于n的正比例式);
當(dāng)q≠1時(shí),Sn= Sn=
三、有關(guān)等差、等比數(shù)列的結(jié)論
14、等差數(shù)列{an}的任意連續(xù)m項(xiàng)的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等差數(shù)列。
15、等差數(shù)列{an}中,若m+n=p+q,則
16、等比數(shù)列{an}中,若m+n=p+q,則
17、等比數(shù)列{an}的任意連續(xù)m項(xiàng)的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等比數(shù)列。

等差數(shù)列的通項(xiàng)公式:an=a1+(n-1)d
等差中項(xiàng):A=(a+b)/2
等差數(shù)列的前n項(xiàng)和:Sn=n(a1+a2)/2 或 Sn=na1+nd(n-1)/2
等比數(shù)列的通項(xiàng)公式: an=a1乘q(n-1)次方
等比中項(xiàng): G平方=ab
等比數(shù)列的前n項(xiàng)和: 當(dāng)q不=1時(shí) :Sn= a1(1-q的n次方)/1-q 或 Sn=a1-an乘q/1-q 當(dāng)q=1時(shí) Sn=na1
等差數(shù)列的通項(xiàng)公式:an=a1+(n-1)d
等差中項(xiàng):A=(a+b)/2
等差數(shù)列的前n項(xiàng)和:Sn=n(a1+a2)/2
或
Sn=na1+nd(n-1)/2
等比數(shù)列的通項(xiàng)公式:
an=a1乘q(n-1)次方
等比中項(xiàng):
G平方=ab
等比數(shù)列的前n項(xiàng)和:
當(dāng)q不=1時(shí)
:Sn=
a1(1-q的n次方)/1-q
或
Sn=a1-an乘q/1-q
當(dāng)q=1時(shí)
Sn=na1
以上就是高二數(shù)學(xué)數(shù)列公式匯總的全部?jī)?nèi)容,當(dāng)d≠0時(shí),Sn是關(guān)于n的二次式且常數(shù)項(xiàng)為0;當(dāng)d=0時(shí)(a1≠0),Sn=na1是關(guān)于n的正比例式。12、等比數(shù)列的通項(xiàng)公式: an= a1 qn-1 an= ak qn-k (其中a1為首項(xiàng)、ak為已知的第k項(xiàng),an≠0)13、。